975 resultados para restraint and seclusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Occupant injury comprises the largest proportion of child road crash trauma in most highly motorised countries. In Australia, road crashes are the primary cause of death for children aged 1-14 years and are among the top three causes of serious injury to this age group. For this reason considerable research attention has been focused on understanding the contributing factors and the most effective ways of improving children’s safety as car passengers. Australia has been particularly active in this area, with well regarded work being conducted on levels of use of dedicated child restraints, restraint crash performance in laboratory conditions, examination of real world restraint crash performance (case review), and studies of psychosocial factors influencing perceptions about restraints and their use (Brown & Bilston, 2006; Brown, McCaskill, Henderson & Bilston, 2006; Edwards, Anderson & Hutchinson, 2006; Lennon, 2005, 2007). New legislation for the restraint of children as vehicle passengers was enacted in Queensland in March 2010. This new legislation recognises the importance of dedicated restraint use for children up to at least age 7 years and the protective benefits of rear seating position in the event of a crash. As part of improving children’s safety and addressing key priority areas, the Queensland Injury Prevention Council (QIPC) and Department of Transport and Main Roads (TMR) commissioned the Centre for Accident Research and Road Safety, Queensland (CARRS-Q) to evaluate the impact of the new legislation. Although at the time of commencing the research the legislation had only been in force for 14 months, it was deemed critical to review its effectiveness in guiding parental choices and compliance in order to inform the design and focus of further supporting initiatives and interventions. Specifically, the research sought clear evidence of exactly what impact, if any, the legislation has had on compliance levels and what difficulties (if any) parents/carers experience in relation to interpreting as well as complying with the requirements of the new law. Knowledge about these barriers or difficulties will allow any future changes or improvements to the legislation to address such barriers and thus improve its effectiveness. Moreover, better information about how the legislation has affected parents will provide a basis to plan non-legislative comprehensive multi-strategy interventions such as community, educational or behavioural interventions with parents/carers and other stakeholder groups. In addition, it will allow identification of the most effective aspects of the legislation and those areas in need of extra attention to improve effectiveness/compliance and thus better protect children travelling in cars and improve their health and safety. This report presents the findings from the four components of the research: the literature review; observational study; intercept interviews and focus group with parents; and the interviews with key stakeholders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgement that many children in Australia travel in restraints that do not offer them the best protection has led to recent changes in legislation such that the type of restraint for children under 7 years is now specified. This paper reports the results of two studies (observational; focus group/ survey) carried out in the state of Queensland to evaluate the effectiveness of these changes to the legislation. Observations suggested that almost all of the children estimated as aged 0-12 years were restrained (95%). Analysis of the type of restraint used for target-aged children (0-6 year olds) suggests that the proportion using an age-appropriate restraint has increased by an estimated 7% since enactment of the legislation. However, around 1 in 4 children estimated as aged under 7 years were using restraints too large for good fit. Results from the survey and focus group suggested parents were supportive of the changes in legislation. Non-Indigenous parents agreed that the changes had been necessary, were effective at getting children into the right restraints, were easy to understand as well as making it clear what restraint to use with children. Moreover, they did not see the legislation as too complicated or too hard to comply with. Indigenous parents who participated in a focus group also regarded the legislation as improving children’s safety. However, they identified the cost of restraints as an important barrier to compliance. In summary, the legislation appears to have had a positive effect on compliance levels and on raising parental awareness of the need to restrain children child-specific restraints for longer. However, it would seem that an important minority of parents transition their children into larger restraints too early for optimal protection. Intervention efforts should aim to better inform these parents about appropriate ages for transition, especially from forward facing childseats. This could potentially be through use of other important transitions that occur at the same age, such as starting school. The small proportion of parents who do not restrain their children at all are also an important community sector to target. Finally, obtaining restraints presents a significant barrier to compliance for parents on limited incomes and interventions are needed to address this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method on concurrent multi-scale model of structural behavior (CMSM-of-SB) for the purpose of structural health monitoring including model updating and validating has been studied. The detailed process of model updating and validating is discussed in terms of reduced scale specimen of the steel box girder in longitudinal stiffening truss of a long span bridge. Firstly, some influence factors affecting the accuracy of the CMSM-of-SB including the boundary restraint regidity, the geometry and material parameters on the toe of the weld and its neighbor are analyzed using sensitivity method. Then, sensitivity-based model updating technology is adopted to update the developed CMSM-of-SB and model verification is carried out through calculating and comparing stresses on different locations under various loading from dynamic characteristic and static response. It can be concluded that the CMSM-of-SB based on the substructure method is valid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an evaluation of the 2010 legislation for child vehicle occupants in Queensland, road-side observations of private passenger vehicles were used to estimate the proportions of children 0-under 7 years travelling in each of the 5 different restraint types (eg. forward facing child restraint). Data was collected in 4 major population centres: Brisbane, Sunshine Coast, Mackay and Townsville. Almost all children were restrained (95.1%, 95% CI 94.3-95.9%), with only 3.3% (95% CI 2.6-4.0%) clearly unrestrained and 44 (1.6%, 95% CI 1.1-2.1%) for whom restraint status could not be determined (‘unknown’). However, around 24.0% (95 CI 21.8-26.2%) of the target-aged children were deemed inappropriately restrained, primarily comprised of 3-6 year olds in seatbelts (18.7% of the 0-6 year olds, 95% CI 16.3-21.1%) or unrestrained (3.7% of the 0-6 year olds, 95% CI 2.5-4.9%) instead of booster seats. In addition, compliance appeared significantly lower for some regional locations where the proportion of children observed as completely unrestrained was relatively high and of concern

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We establish an argument for fiscal restraints which is based on the idea that politicians are experts in the meaning of the credence good literature. A budget maximizing politician is better informed than the electorate about the necessary spending to ensure the states ability to provide services for the economy. Voters, being able to observe the budget but not the necessary level of spending, attenuate the government’s spending level via electoral control. A fiscal restraint limits the maximum spending a government will choose if the level of spending ensuring the politicians reelection is not sufficient to ensure the state’s ability to provide services to the economy. We determine when such a fiscal restraint improves voter welfare and discuss the role of the opposition in situations where very high levels of spending are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Coping Orientation to Problems Experienced is a multidimensional scale designed to assess how people respond to stress. The COPE has been validated in a variety of populations displaying variations in factor structure. However, in terms of mental health populations, it has only been validated in alcohol-dependent samples. This paper investigated the factor structure of the COPE in a sample of adults diagnosed with depression and anxiety. Two hundred and seventy-one patients attending cognitive behaviour therapy for anxiety and depression completed the COPE. Confirmatory factor analysis found a poor fit for both lower order and higher order factors based upon the Lyne and Roger (2000) study. Exploratory factor analyses identified six primary subscales (Active Planning, Social Support, Denial, Acceptance, Disengagement, Restraint) which explained approximately 60% of the variance in coping. These 6 subscales may assist researchers and clinicians to validly measure coping in anxious and depressed adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research shows that Indigenous Australians suspicion and fear of being ‘locked up’ may influence mental health service avoidance. Given this, the aim of this study was to explore, by qualitative analysis of in depth interviews (N = 3), how three Indigenous people experienced the controversial practice of seclusion Hans-Georg Gadamer’s phenomenology guided analysis of the material, and allowed narrated experiences to be understood within their cultural and historical context. Participants viewed seclusion negatively: police involvement in psychiatric care; perceptions of being punished and powerless; occasions of extreme use of force; and lack of care were prominent themes throughout the interviews. While power imbalances inherent in seclusion are problematic for all mental health clients, the distinguishing factor in the Indigenous clients’ experience is that seclusion is continuous with the discriminatory and degrading treatment by governments, police and health services that many Indigenous people have experienced since colonisation. The participants’ experiences echoed Goffman’s (1961) findings that institutional practices act to degrade and dehumanise clients whose resulting conformity eases the work of nursing staff. While some nurses perceive that seclusion reduces clients’ agitation (Meehan, Bergen & Fjeldsoe, 2004; Wynaden et al., 2001), one must ask at what cost to clients’ dignity, humanity and basic human rights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve patients receiving acute in-patient psychiatric care in Queensland, Australia, participated in semi-structured interviews to elicit their perceptions of seclusion. All respondents had experienced time in seclusion within the 7 days prior to interview. Interviews were audiotaped, transcribed and analysed using content analysis. Five major themes emerged: use of seclusion, emotional impact, sensory deprivation, maintaining control and staff-patient interaction. The prevailing negativity towards seclusion underscores the need for ongoing critical review of its use. In particular, the relationship between patient responses to seclusion and the circumstances in which seclusion takes place requires greater consideration. Interventions such as providing information to patients about seclusion, increased interaction with patients during seclusion, attention to privacy and effective debriefing following seclusion may help to reduce the emotional impact of the practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design Semi-structured interviews. Setting 2 open, acute care units of a large tertiary mental health facility in Queensland, Australia. Patients 12 patients (58% men) who were 18–52 years of age and were secluded in the previous 7 days (mean duration 3.4 h). Methods Semi-structured, thematically organised interviews were audiotaped and transcribed. Transcripts were checked for errors against the audiotaped versions and were analysed using the process of meaning categorisation. Themes were identified and coded to produce categories. All members of the research team agreed on the final categorisations. These broad categories were further analysed, and themes were used to reflect patients' experiences of seclusion. Main findings 5 recurrent themes emerged. (1) Patients described the use of seclusion. Some patients thought that seclusion was used inappropriately and that the seclusion period was of more benefit to …

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material yielding is typically modeled either by plastic zone or plastic hinge methods under the context of geometric and material nonlinear finite element methods. In fire analysis of steel structures, the plastic zone method is widely used, but it requires extensively more computational efforts. The objective of this paper is to develop the nonlinear material model allowing for interaction of both axial force and bending moment, which relies on the plastic hinge method to achieve numerical efficiency and reduce computational effort. The biggest advantage of the plastic-hinge approach is its computational efficiency and easy verification by the design code formulae of the axial force–moment interaction yield criterion for beam–column members. Further, the method is reliable and robust when used in analysis of practical and large structures. In order to allow for the effect of catenary action, axial thermal expansion is considered in the axial restraint equations. The yield function for material yielding incorporated in the stiffness formulation, which allows for both axial force and bending moment effects, is more accurate and rational to predict the behaviour of the frames under fire. In the present fire analysis, the mechanical properties at elevated temperatures follow mainly the Eurocode 3 [Design of steel structures, Part 1.2: Structural fire design. European Committee for Standisation; 2003]. Example of a tension member at a steady state heating condition is modeled to verify the proposed spring formulation and to compare with results by others. The behaviour of a heated member in a highly redundant structure is also studied by the present approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the response of pile foundations to ground shocks induced by surface explosion using fully coupled and non-linear dynamic computer simulation techniques together with different material models for the explosive, air, soil and pile. It uses the Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations. Blast wave propagation in soil, horizontal pile deformation and pile damage are presented to facilitate failure evaluation of piles. Effects of end restraint of pile head and the number and spacing of piles within a group on their blast response and potential failure are investigated. The techniques developed and applied in this paper and its findings provide valuable information on the blast response and failure evaluation of piles and will provide guidance in their future analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic crashes are the leading cause of death and injury among children aged between 4-14 years1,2 and premature graduation to adult seat belts2,3 and restraint misuse4 are common and known risk factors. Children are believed to prematurely graduate to adult belts and misuse the seat belt in booster seats if uncomfortable2,5,6. Although research has concentrated on educating parents and designing better restraints to reduce errors in use, comfort of the child in the restraint has not been studied. Currently there is no existing method for studying comfort in children in restraint systems, although self-report survey tools and pressure distribution mapping is commonly used to measure comfort among adult in vehicle seats. This poster presents preliminary results from work aimed at developing an appropriate method to measure comfort of children in vehicle restraint systems. The specific aims are to: 1. Examine the potential of using modified adult self-report/survey and pressure distribution mapping in children 2. Develop a video based, objective measure of comfort in children.