959 resultados para raman spektroskopia
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
A perylene derivative, n-(n-butyl)-n'-(4-aminobutyl) perylene-3,4,9,10-tetracarboxylic acid diimide (simplified as nBu-PTCD-(CH2)(4)-NH2) has been chosen as the target molecule for studies involving single molecule detection (SMD) using Raman scattering. The enhancement of the Raman signal is the result of the multiplicative effects of two phenomena, resonance Raman scattering (RRS) and surface-enhanced Raman scattering (SERS), which leads to the resulting surface-enhanced resonance Raman scattering (SERRS) process. The SERRS spectra from a single molecule have been collected using both silver and gold colloids. The SMD detection of the fundamental vibrational frequencies characteristic of nBu-PTCD-(CH2)(4)-NH2 is complemented with the detection of some overtones and combinations from ring stretching modes at the single molecule level. The background characterization of the ensemble vibrational spectroscopy of the target perylene and its SERRS is also presented, which includes the UV-vis absorption, experimental and calculated Raman scattering and infrared absorption, and molecular organization using reflection-absorption infrared spectroscopy (RAIRS).
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. on the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE-PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films.
Resumo:
Vitreous samples were prepared in the (100 - x)% NaPO3-x% MoO3 (0 <= x <= 70) glass-forming system by a modified melt method that allowed good optical quality samples to be obtained. The structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), Raman scattering, and solid-state nuclear magnetic resonance (NMR) for P-31, Na-23, and Mo-95 nuclei. Addition of MoO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures up to x = 45, suggesting a significant increase in network connectivity. For this same composition range, vibrational spectra suggest that the Mo6+ ions are bonded to some nonbridging oxygen atoms (Mo-O- or Mo=O bonded species). Mo-O-Mo bond formation occurs only at MoO3 contents exceeding x = 45. P-31 magic-angle spinning (MAS) NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. These sites are denoted as Q(2Mo)((2)), Q(1Mo)((2)), and Q(0Mo)((2)), respectively. For x < 0.45, the populations of these sites can be described along the lines of a binary model, according to which each unit of MoO3 converts two Q(nMo)((2)) sites into two Q((n+1)Mo)((2)) sites (n = 0, 1). This structural model is consistent with the presence of tetrahedral Mo(=O)(2)(O-1/2)(2) environments. Indeed, Mo-95 NMR data suggest that the majority of the molybdenum species are four-coordinated. However, the presence of additional six-coordinate molybdenum in the MAS NMR spectra indicates that the structure of these glasses may be more complicated and may additionally involve sharing of network modifier oxide between the network formers phosphorus and molybdenum. This latter hypothesis is further supported by Na-23{P-31} rotational echo double resonance (REDOR) data, which clearly reveal that the magnetic dipole-dipole interactions between P-31 and Na-23 are increasingly diminished with increasing molybdenum content. The partial transfer of modifier from the phosphate to the molybdate network former implies a partial repolymerization of the phosphate species, resulting in the formation of Q(nMo)((3)) species and accounting for the observed increase in the glass transition temperature with increasing MoO3 content that is observed in the composition range 0 <= x <= 45. Glasses with MoO3 contents beyond x = 45 show decreased thermal and crystallization stability. Their structure is characterized by isolated phosphate species [most likely of the P(OMo)(4) type] and molybdenum oxide clusters with a large extent of Mo-O-Mo connectivity.
Resumo:
Transparent glasses were synthesized in the NaPO3-BaF2 WO3 tertiary system and several structural characterizations were performed by X-ray absorption spectroscopy (XANES) at the tungsten L-I and L-III absorption edges and by Raman spectroscopy. Special attention was paid to the coordination state of tungsten atoms in the vitreous network.XANES investigations showed that tungsten atoms are only six-fold coordinated (octahedra WO6) and that these glasses are free of tungstate tetrahedra (WO4).In addition, Raman spectroscopy allowed to identify a break in the linear phosphate chains as the amount of WO3 increases and the formation of P-O-W bonds in the vitreous network indicating the modifier behavior of WO6 octahedra in the glass network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed to identify the presence of W-O- and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO3 concentrated samples (&GE; 30% molar) due to the formation of WO6 clusters. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Transverse-optical (TO) and longitudinal-optical (LO) phonons of zinc blende InxGa1-xN (0 less than or equal to x less than or equal to 0.31) layers are observed through first-order micro-Raman scattering experiments. The samples are grown by molecular-beam epitaxy on GaAs (001) substrates, and x-ray diffraction measurements are performed to determine the epilayer alloy composition. Both the TO and LO phonons exhibit a one-mode-type behavior, and their frequencies display a linear dependence on the composition. The Raman data reported here are used to predict the A(1) (TO) and E-1 (TO) phonon frequencies of the hexagonal InxGa1-xN alloy. (C) 1999 American Institute of Physics. [S0003-6951(99)01234-6].
Resumo:
Photoexpansion and photobleaching effects have been observed in amorphous GeS2 + Ga2O3 (GGSO) thin films, when their surfaces were exposed to UV light. The photoinduced changes on the surface of the samples are indications that the structure has been changed as a result of photoexcitation. In this paper, micro-Raman, energy dispersive X-ray analysis (EDX) and backscattering electrons (BSE) microscopy were the techniques used to identify the origin of these effects. Raman spectra revealed that these phenomena are a consequence of the Ge-S bonds' breakdown and the formation of new Ge-O bonds, with an increase of the modes associated with Ge-O-Ge bonds and mixed oxysulphide tetrahedral units (S-Ge-O). The chemical composition measured by EDX and BSE microscopy images indicated that the irradiated area is oxygen rich. So, the present paper provides fundamental insights into the influence of the oxygen within the glass matrix on the considered photoinduced effects. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chemistry of the pentadentate edta complexes of ruthenium(III) and (II) with 2-mercaptopyridine (HSpy) has been investigated based on spectroscopic, kinetic and electrochemical techniques. The reaction of [Ru(III)(edta)H2O]- with HSpy proceeds with a specific rate of 1.05 × 104 M-1 S -1 (25°C, I = 0.10 M, acetate buffer), forming a red complex (λmax = 550 nm) which undergoes a relaxation process as a function of pH, with an apparent pKa = 4.35 and kobs = 0.31 S -1. The second reaction depends on the concentration of HSpy and leads to a stable green product (λmax = 630 mn). A pronounced enhancement has been observed in the Raman spectra of the complexes, particularly in the region of the metal-ligand vibrations. The electronic and resonance Raman spectra are consistent with the coordination of HSpy via the sulfur atom in the red complex, and with a chelate binding in the green species. © 1987.
Resumo:
Pre-resonant Raman effect of chromate ion, CrO2- 4, was observed in a metasilicate glass with molar composition 2Na2O · 1CaO · 3SiO2 containing 1.0 wt% of Cr2O3. Raman spectra were measured by the conventional 90° scattering geometry and by the microprobe Raman spectroscopic techniques. The presence of chromate ions in the glass is favoured by the glass composition and oxidizing conditions during the glass melting, and they are responsible for optical absorption bands at 370 and 250 nm. Raman spectrum of the undoped glass presents bands at 625, 860 and 980 cm-1, and the presence of chromate ions gives rise to additional bands at 365, 850 and a shoulder at 890 cm-1. An enhancement of the 850 cm-1 Raman band is observed with decreasing laser exciting wavelength. The exciting frequency dependence of the intensity of this band is discussed in terms of theoretical models given in the literature.
Resumo:
Extended X-ray absorption fine spectroscopy (EXAFS) and Raman scattering studies of InF3-BaF2 and InF3-SrF2 binary glasses are reported. For all compositions, the local structure of the glasses is built with InF6 units. For all glasses studied, the indium neighbour's number and the In-F mean bond length are equal to the values of the InF3 crystalline phase (6 and 0.205 nm, respectively). © 1996 Chapman & Hall.
Resumo:
We report on first-order micro-Raman and resonant micro-Raman scattering measurements on c-InxGa1-xN (0 ≤ x ≤ 0.31) epitaxial layers. We have found that both, the transverse-optical (TO) and longitudinal-optical (LO) phonons of InxGa1-xN alloy exhibit a one-mode-type behavior. Their frequencies at Γ lie on straight lines connecting the corresponding values obtained for the c-GaN and c-InN binary compounds. Evidence for phase separation is shown in the sample with the alloy composition x = 0.31. The Raman spectra, with excitation energy close to 2.4 eV, show an enhanced additional peak, with frequency between the values found for the LO and TO phonon modes of the C-In0.31Ga0.69N epitaxial layer. We ascribed this peak to the LO phonon mode of a minority phase with In content of ≈0.80.