933 resultados para plastic strain
Resumo:
A theoretical description of thermo-plastic instability in simple shear is presented in a system of equations describing plastic deformation, the first law of thermodynamics and Fourier's heat transfer rule. Both mechanical and thermodynamical parameters influence instability and it is shown that two different modes of instability may exist. One of them is dominated by thermal softening and has a characteristic time and length, connected to each other by thermal diffusion.A criterion combining thermal softening, current stress, density, specific heat, work-hardening, thermal conductivity and current strain rate is obtained and practical implications are discussed.
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.
Resumo:
Low strain hardening has hitherto been considered an intrinsic behavior for most nanocrystalline (NC) metals, due to their perceived inability to accumulate dislocations. In this Letter, we show strong strain hardening in NC nickel with a grain size of 20 nm under large plastic strains. Contrary to common belief, we have observed significant dislocation accumulation in the grain interior. This is enabled primarily by Lomer-Cottrell locks, which pin the lock-forming dislocations and obstruct islocation. motion. These observations may help with developing strong and ductile NC metals and alloys.
Resumo:
This paper presents a theoretical and experimental study of multidirectional steel fibers reinforced concrete slabs (SFRC). The study is based on a real building application using SFRC flag slabs. For the evaluation of the slabs bearing capacity, plastic calculations are performed both at section and structure levels. The section analysis uses the perfect plastic stress-strain diagram, with reference to the values of the strength characteristics of SFRC based on previous jobs that used similar fibers and dosages. In the structure analysis the plastic yield lines method has been used. This method relates the section last bearing moment and the plastic collapse load. The experimental campaign has consisted of the testing of six 2 m. diameter circular shaped slabs prototypes, and has allowed to verify the reference resistance used in the calculations.
Resumo:
The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045-1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix-Gao model, which have been extensively used to predict size effects in indentation hardness. © 2012 Elsevier Ltd.
Resumo:
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.
Resumo:
In this article, we review our recent advances in understanding the deformation behavior of a typical tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) bulk metallic glass (BMG), as a model material, under various loading modes and strain rates, focusing particularly on the rate-dependence and formation mechanism of shear-banding. Dynamic and quasi-static mechanical experiments, including plate shear, shear punch and spherical indentation, and continuum as well as atomistic modeling on shear-banding are discussed. The results demonstrate that higher strain rate slows down the annihilation process of free volume, but promotes the free-volume coalescence, which is responsible for the rate-dependent shear banding. The physical origin of shear bands, that is the free volume softening underpinned by irreversible rearrangements of atoms, is unveiled. Finally, some concluding remarks are given.
Resumo:
The plastic zone size and crack opening displacement of phenolphthalein polyether ketone (PEK-C) at various conditions were investigated. Both of them increase with increasing temperature (decreasing strain rate), i.e. yield stress steadily falls. Thus, the mechanism increasing the yield stress leads to increased constraint in the crack tip and a corresponding reduction in the crack opening displacement and the plastic deformation zone. The effect of the plastic deformation on the fracture toughness is also discussed.
Resumo:
A strong strain-rate and temperature dependence was observed for the fracture toughness of phenolphthalein polyether ketone (PEK-C). Two separate crack-blunting mechanisms have been proposed to account for the fracture-toughness data. The first mechanism involves thermal blunting due to adiabatic heating at the crack tip for the high temperatures studied. In the high-temperature range, thermal blunting increases the fracture toughness corresponding to an effectively higher test temperature. However, in the low-temperature range, the adiabatic temperature rise is insufficient to cause softening and Jic increases with increasing temperature owing to viscoelastic losses associated with the p-relaxation there. The second mechanism involves plastic blunting due to shear yield/flow processes at the crack tip and this takes place at slow strain testing of the single-edge notched bending (SENB) samples. The temperature and strain-rate dependence of the plastic zone size may also be responsible for the temperature and strain-rate dependence of fracture toughness.
Resumo:
Data from a series of controlled suction triaxial tests on samples of compacted speswhite kaolin were used in the development of an elasto–plastic critical state framework for unsaturated soil. The framework is defined in terms of four state variables: mean net stress, deviator stress, suction and specific volume. Included within the proposed framework are an isotropic normal compression hyperline, a critical state hyperline and a state boundary hypersurface. For states that lie inside the state boundary hypersurface the soil behaviour is assumed to be elastic, with movement over the state boundary hypersurface corresponding to expansion of a yield surface in stress space. The pattern of swelling and collapse observed during wetting, the elastic–plastic compression behaviour during isotropic loading and the increase of shear strength with suction were all related to the shape of the yield surface and the hardening law defined by the form of the state boundary. By assuming that constant–suction cross–sections of the yield surface were elliptical it was possible to predict test paths for different types of triaxial shear test that showed good agreement with observed behaviour. The development of shear strain was also predicted with reasonable success, by assuming an associated flow rule.
Resumo:
Deep-seated progressive failures of cuttings in heavily overconsolidated clays have been observed in the field and are well documented, especially for London Clays (Potts, Kovacevic, & Vaughan, 1997; Smethurst, Powrie, & Clarke, 2006; Take, 2003), however, the process of softening and the development of a rupture surface in other clays, including the clay fraction of glacial tills, is still to be established. Recent decades have witnessed extreme weather conditions in Northern Ireland with dry summers and wet winters. The dynamics of this pore pressure variation can trigger strength reduction and progressive plastic straining, both of which will lead to slope failure. The aim of this research is to evaluate the effect of pore pressure variations on the deformation and long-term stability of large cuttings in glacial tills in Northern Ireland. This paper outlines the overall research program and presents initial laboratory findings (Carse, 2013).
Resumo:
The mechanisms underlying the increase in stress for large mechanical strains of a polymer glass, quantified by the strain-hardening modulus, are still poorly understood. In the present paper we aim to elucidate this matter and present new mechanisms. Molecular-dynamics simulations of two polymers with very different strain-hardening moduli (polycarbonate and polystyrene) have been carried out. Nonaffine displacements occur because of steric hindrances and connectivity constraints. We argue that it is not necessary to introduce the concept of entanglements to understand strain hardening, but that hardening is rather coupled with the increase in the rate of nonaffine particle displacements. This rate increases faster for polycarbonate, which has the higher strain-hardening modulus. Also more nonaffine chain stretching is present for polycarbonate. It is shown that the inner distances of such a nonaffinely deformed chain can be well described by the inner distances of the worm-like chain, but with an effective stiffness length (equal to the Kuhn length for an infinite worm-like chain) that increases during deformation. It originates from the finite extensibility of the chain. In this way the increase in nonaffine particle displacement can be understood as resulting from an increase in the effective stiffness length of the perturbed chain during deformation, so that at larger strains a higher rate of plastic events in terms of nonaffine displacement is necessary, causing in turn the observed strain hardening in polymer glasses.