986 resultados para piezoresponse force microscopy (PFM)
Resumo:
We report the study of the dynamics of the unbinding process under a force load f of adsorbed proteins (fibrinogen) on a solid surface (hydrophilic silica) by means of atomic force microscopy spectroscopy. By varying the loading rate rf, defined by f = rf t, t being the time, we find that, as for specific interactions, the mean rupture force increases with rf. This unbinding process is analyzed in the framework of the widely used Bell model. The typical dissociation rate at zero force entering in the model lies between 0.02 and 0.6 s−1. Each measured rupture is characterized by a force f0, which appears to be quantized in integer multiples of 180–200 pN.
Resumo:
The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.
Resumo:
Determining the mode-of-binding of a DNA ligand is not always straightforward. Here, we establish a scanning force microscopic assay for mode-of-binding that is (i) direct: lengths of individual DNA-ligand complexes are directly measured; (ii) rapid: there are no requirements for staining or elaborate sample preparation; and (iii) unambiguous: an observed increase in DNA length upon addition of a ligand is definitive evidence for an intercalative mode-of-binding. Mode-of-binding, binding affinity, and site-exclusion number are readily determined from scanning force microscopy measurements of the changes in length of individual drug-DNA complexes as a function of drug concentration. With this assay, we resolve the ambiguity surrounding the mode of binding of 2,5-bis(4-amidinophenyl) furan (APF) to DNA and show that it binds to DNA by nonintercalative modes. APF is a member of an important class of aromatic dicationic drugs that show significant activity in the treatment of Pneumocystis carinii pneumonia, an opportunistic infection that is the leading cause of death in AIDS patients.
Resumo:
The inwardly rectifying K+ channel ROMK1 has been implicated as being significant in K+ secretion in the distal nephron. ROMK1 has been shown by immunocytochemistry to be expressed in relevant nephron segments. The development of the atomic force microscope has made possible the production of high resolution images of small particles, including a variety of biological macromolecules. Recently, a fusion protein of glutathione S-transferase (GST) and ROMK1 (ROMK1-GST) has been used to produce a polyclonal antibody for immunolocalization of ROMK1. We have used atomic force microscopy to examine ROMK1-GST and the native ROMK1 polypeptide cleaved from GST. Imaging was conducted with the proteins in physiological solutions attached to mica. ROMK1-GST appears in images as a particle composed of two units of similar size. Analyses of images indicate that the two units have volumes of approximately 118 nm3, which is close to the theoretical volume of a globular protein of approximately 65 kDa (the molecular mass of ROMK1-GST). Native GST exists as a dimer, and the images obtained here are consistent with the ROMK1-GST fusion protein's existence as a heterodimer. In experiments on ROMK1 in aqueous solution, single molecules appear to aggregate, but contact to the mica was maintained. Addition of ATP to the solution produced a change in height of the aggregates. This change (which was reversible) suggests that ATP induces a structural change in the ROMK1 protein. The data show that atomic force microscopy is a useful tool for examination of purified protein molecules under near-physiological conditions, and furthermore, that structural alterations in the proteins may be continuously investigated.
Resumo:
A methodology has been developed for the study of molecular recognition at the level of single events and for the localization of sites on biosurfaces, in combining force microscopy with molecular recognition by specific ligands. For this goal, a sensor was designed by covalently linking an antibody (anti-human serum albumin, polyclonal) via a flexible spacer to the tip of a force microscope. This sensor permitted detection of single antibody-antigen recognition events by force signals of unique shape with an unbinding force of 244 +/- 22 pN. Analysis revealed that observed unbinding forces originate from the dissociation of individual Fab fragments from a human serum albumin molecule. The two Fab fragments of the antibody were found to bind independently and with equal probability. The flexible linkage provided the antibody with a 6-nm dynamical reach for binding, rendering binding probability high, 0.5 for encounter times of 60 ms. This permitted fast and reliable detection of antigenic sites during lateral scans with a positional accuracy of 1.5 nm. It is indicated that this methodology has promise for characterizing rate constants and kinetics of molecular recognition complexes and for molecular mapping of biosurfaces such as membranes.
Resumo:
Scanning force microscopy was used to image rat basophilic leukemia (RBL-2H3) cell surfaces under different stimulation conditions that either permit or inhibit secretion. Cross-linking the surface IgE receptors with dinitrophenol-conjugated bovine serum albumin initiates secretion in RBL cells with concomitant spreading of the cell body. Structures at the cell surface approximately 1.5 microns in diameter relate to secretion both spatially and temporally. The position of these surface pits and their sizes suggest that they may be related to the dense-core granules positioned along the cytoskeletal filaments in detergent-extracted, unactivated RBL cell processes. Topographic scanning force microscopy images of RBL cell surfaces at 2, 5, and 35 min after activation show that these structures persist and change in cross-sectional profile with time after activation. These structures may be related to the membrane retrieval mechanism of cells after intense stimulation.
Resumo:
We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.
Resumo:
The magnetization reversal of two-dimensional arrays of parallel ferromagnetic Fe nanowires embedded in nanoporous alumina templates has been studied. By combining bulk magnetization measurements (superconducting quantum interference device magnetometry) with field-dependent magnetic force microscopy (MFM), we have been able to decompose the macroscopic hysteresis loop in terms of the irreversible magnetic responses of individual nanowires. The latter are found to behave as monodomain ferromagnetic needles, with hysteresis loops displaced (asymmetric) as a consequence of the strong dipolar interactions between them. The application of field-dependent MFM provides a microscopic method to obtain the hysteresis curve of the array, by simply registering the fraction of up and down magnetized wires as a function of applied field. The observed deviations from the rectangular shape of the macroscopic hysteresis loop of the array can be ascribed to the spatial variation of the dipolar field through the inhomogeneously filled membrane. The system studied proves to be an excellent example of the two-dimensional classical Preisach model, well known from the field of hysteresis modeling and micromagnetism.
Resumo:
Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.
Resumo:
Atomic force microscopy has been used to study the surface properties of model spray dried powders. Phase imaging, nanoindentation and force modulation microscopy have differentiated between the different surface material properties of the particles, revealing a regular dispersion of soft, oil rich areas distributed across the particles' surface. Humidity and temperature cycling effects on the caking behavior of the particles have also been investigated, with significant morphology changes and onset of caking found to occur within relatively short periods of time.
Resumo:
Spray-dried materials are being used increasingly in industries such as food, detergent and pharmaceutical manufacture. Spray-dried sodium carbonate is an important product that has a great propensity to cake; its moisture-sorption properties are very different to the crystalline and amorphous species, with a great affinity for atmospheric moisture. This work demonstrates how the noncontact surface analysis of individual particles using atomic force microscopy can highlight the possible mechanisms of unwanted agglomeration. The nondestructive nature of this method allows cycling of localised humidity in situ and repeated scanning of the same particle area. The resulting topography and phase scans showed that humidity cycling caused changes in the distribution of material phases that were not solely dependent on topographical changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The deposition by atomic vapor deposition of highly c-axis-oriented Aurivillius phase Bi 5Ti 3FeO 15 (BTFO) thin films on (100) Si substrates is reported. Partially crystallized BTFO films with c-axis perpendicular to the substrate surface were first deposited at 610°C (8 excess Bi), and subsequently annealed at 820°C to get stoichiometric composition. After annealing, the films were highly c-axis-oriented, showing only (00l) peaks in x-ray diffraction (XRD), up to (0024). Transmission electron microscopy (TEM) confirms the BTFO film has a clear layered structure, and the bismuth oxide layer interleaves the four-block pseudoperovskite layer, indicating the n 4 Aurivillius phase structure. Piezoresponse force microscopy measurements indicate strong in-plane piezoelectric response, consistent with the c-axis layered structure, shown by XRD and TEM.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)