1000 resultados para photosynthetically active radiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO3-) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation.Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO3- concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study had as its objective the evaluation of the influence of shading screens of different colors on the different microclimate variables in a greenhouse covered with transparent low-density polyethylene (LDPE). The experiment was conducted with five treatments: thermo-reflective screen (T1); a control - without screen (T2); red screen (T3); blue screen (T4); and black screen (T5), all of them with 70% of shading. An automatic micrometeorological station was installed in each treatment, measuring air temperature (T), relative humidity (RH), incoming solar radiation (Rg), photosynthetically active radiation (PAR) and net radiation (Rn) continuously. The control (T2) and red screen (T3) treatments promoted the highest solar radiation transmissivity, respectively 56.3 and 27%. The black screen (T5) had the lowest solar radiation transmissivity (10.4%). For PAR and Rn the same tendency was observed. The highest temperature was observed under blue screen (T4) treatment, which was 1.3 °C higher than external condition. Blue screen (T4) treatment also presented the highest relative humidity difference between inside and outside conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5◦ N–5◦ S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile organic compounds play a critical role in ozone formation and drive the chemistry of the atmosphere, together with OH radicals. The simplest volatile organic compound methane is a climatologically important greenhouse gas, and plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. The OH radical is the most important atmospheric oxidant and knowledge of the atmospheric OH sink, together with the OH source and ambient OH concentrations is essential for understanding the oxidative capacity of the atmosphere. Oceanic emission and / or uptake of methanol, acetone, acetaldehyde, isoprene and dimethyl sulphide (DMS) was characterized as a function of photosynthetically active radiation (PAR) and a suite of biological parameters, in a mesocosm experiment conducted in the Norwegian fjord. High frequency (ca. 1 minute-1) methane measurements were performed using a gas chromatograph - flame ionization detector (GC-FID) in the boreal forests of Finland and the tropical forests of Suriname. A new on-line method (Comparative Reactivity Method - CRM) was developed to directly measure the total OH reactivity (sink) of ambient air. It was observed that under conditions of high biological activity and a PAR of ~ 450 μmol photons m-2 s-1, the ocean acted as a net source of acetone. However, if either of these criteria was not fulfilled then the ocean acted as a net sink of acetone. This new insight into the biogeochemical cycling of acetone at the ocean-air interface has helped to resolve discrepancies from earlier works such as Jacob et al. (2002) who reported the ocean to be a net acetone source (27 Tg yr-1) and Marandino et al. (2005) who reported the ocean to be a net sink of acetone (- 48 Tg yr-1). The ocean acted as net source of isoprene, DMS and acetaldehyde but net sink of methanol. Based on these findings, it is recommended that compound specific PAR and biological dependency be used for estimating the influence of the global ocean on atmospheric VOC budgets. Methane was observed to accumulate within the nocturnal boundary layer, clearly indicating emissions from the forest ecosystems. There was a remarkable similarity in the time series of the boreal and tropical forest ecosystem. The average of the median mixing ratios during a typical diel cycle were 1.83 μmol mol-1 and 1.74 μmol mol-1 for the boreal forest ecosystem and tropical forest ecosystem respectively. A flux value of (3.62 ± 0.87) x 1011 molecules cm-2 s-1 (or 45.5 ± 11 Tg CH4 yr-1 for global boreal forest area) was derived, which highlights the importance of the boreal forest ecosystem for the global budget of methane (~ 600 Tg yr-1). The newly developed CRM technique has a dynamic range of ~ 4 s-1 to 300 s-1 and accuracy of ± 25 %. The system has been tested and calibrated with several single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Field tests at an urban and forest site illustrate the promise of the new method. The results from this study have improved current understanding about VOC emissions and uptake from ocean and forest ecosystems. Moreover, a new technique for directly measuring the total OH reactivity of ambient air has been developed and validated, which will be a valuable addition to the existing suite of atmospheric measurement techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de esta investigación fue determinar los efectos de las coberturas vegetales en el microclima de la planta de vid. Se compararon cinco coberturas de diferente ciclo vegetativo con respecto al manejo de suelo sin labranza mediante aplicación de herbicidas. El estudio se desarrolló en un viñedo cv. Malbec conducido en espaldera alta, situado en Agrelo, Luján de Cuyo, Mendoza, Argentina. Se determinaron parámetros microclimáticos, temperatura, humedad relativa y radiación a nivel de racimos, temperatura del suelo, cantidad y calidad de la radiación reflejada por la cobertura. También se midió la expresión vegetativa y de uvas y el potencial enológico. Se verificó una significativa disminución de la radiación fotosintéticamente activa (RFA) reflejada por las coberturas con una menor relación “Rojo/Rojo lejano" comparada con el suelo descubierto. Sin embargo, el efecto no se percibió dentro de la canopia debido a que las coberturas permanentes de trébol rojo (Trifolium pratensis) y agropiro alargado (Agropyron elongatum) restringieron el vigor de las cepas, disminuyendo el crecimiento de brotes y el tamaño de hojas, lo cual se tradujo en una mayor recepción directa de la RFA a nivel de racimos. No hubo una significativa variación en cuanto a temperatura máxima, mínima y amplitud térmica a nivel de racimos. No obstante ello, los tratamientos con mayor cobertura de suelo tendieron a reducir levemente la temperatura mínima a nivel de racimos. La humedad relativa en la canopia no fue significativamente afectada. El trébol rojo, el agropiro alargado, la mezcla centeno-cebadilla (Secale cereale-Bromus catharticus) y el sorgo del Sudán (Sorghum sudanensis) redujeron notablemente la amplitud térmica del suelo. El efecto fue determinado principalmente por la disminución de la temperatura máxima. Las coberturas vegetales con alguna dificultad para desarrollarse durante su ciclo vegetativo tuvieron un comportamiento intermedio o uno muy similar al de un suelo descubierto. La introducción de una cobertura permanente con buena invasión del sitio interfilar permitió modificar indirectamente las características microclimáticas de la canopia, a través del control del crecimiento vegetativo y de los rendimientos de la planta de vid, modificando el equilibrio vigor / producción del viñedo, y por lo tanto la composición de las uvas y del vino elaborado.