929 resultados para parameter learning process
Resumo:
The methodological approach a teacher uses in the competence teaching-learning process determines the way students learn. Knowledge can be acquired from a series of perspectives, mainly: “know-what” (concept), where facts and descriptions of (natural or social) phenomena are pursued; “know-how” (procedure), where methods and procedures for their application are described; and “know-why” (competence), where general principles and laws that explain both the facts and their applications are sought. As all the three cases are interconnected, the boundaries between them are not fully clear and their application uses shared elements. In any case, the depth of student’s acquired competences will be directly affected by the teaching-learning perspective, traditionally aiming to a “know-why” approach for full competence acquisition. In this work, we discuss a suitable teaching-learning methodology for evaluating whether a “know-how”, “know-what” or combined approach seems better for enhancing competence learning in students. We exemplify the method using a selection of formative activities from the Physical Chemistry area in the Grades of Chemistry and Chemical Engineering.
Resumo:
Designing educational resources allow students to modify their learning process. In particular, on-line and downloadable educational resources have been successfully used in engineering education the last years [1]. Usually, these resources are free and accessible from web. In addition, they are designed and developed by lecturers and used by their students. But, they are rarely developed by students in order to be used by other students. In this work-in-progress, lecturers and students are working together to implement educational resources, which can be used by students to improve the learning process of computer networks subject in engineering studies. In particular, network topologies to model LAN (Local Area Network) and MAN (Metropolitan Area Network) are virtualized in order to simulate the behavior of the links and nodes when they are interconnected with different physical and logical design.
Resumo:
Virtual learning environments (VLEs) have witnessed a high evolution, namely regarding their potentialities, the tools and the activities they provide. VLEs enable us to access large quantities of data resulting from both students and teachers’ activities developed in those environments. Monitoring undergraduates’ activities in VLEs is important as it allows us to showcase, in a structured way, a number of indicators which may be taken into account to understand the learning process more deeply and to propose improvements in the teaching and learning strategies as well as in the institution’s virtual environment. Although VLEs provide several data sectorial statistics, they do not provide knowledge regarding the institution’s evolution. Therefore, we consider the analysis of the activity logs in VLEs over a period of five years to be paramount. This paper focuses on the analysis of the activities developed by students in a virtual learning environment, from a sample of undergraduate students, approximately 7000 per year, over a period of five academic years, namely from 2009/2010 to 2013/2014. The main aims of this research work are to assess the evolution of activity logs in the virtual learning environment of a Portuguese public higher education institution, in order to fill possible gaps and to hold out the prospect of new forms of use of the environment. The results obtained from the data analysis show that overall, the number of accesses to the virtual learning environment increased over the five years under study. The most used tools were Resources, Messages and Assignments. The most frequent activities developed with these tools were respectively consulting information, sending messages and submitting assignments. The frequency of accesses to the virtual learning environment was characterized according to the number of accesses in the activity log. The data distribution was divided into five frequency categories named very low, low, moderate, high and very high, determined by the percentiles 20, 40, 60, 80 and 100, respectively. The study of activity logs of virtual learning environments is important not only because they provide real knowledge of the use that undergraduates make of these environments, but also because of the possibilities they create regarding the identification of a need for new pedagogical approaches or a reinforcement of previously consolidated approaches.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-03
Resumo:
A considerable body of literature suggests that significant psychological barrier and anxiety characterize the teaching and learning process in statistics. This study investigates the incidence of statistics anxiety, the extent to which it can be overcome and the factors that contribute to the process of overcoming it. Self-study and overall teaching quality, amongst others, significantly contributed to this outcome. This study identifies factors contributing to overall teaching quality. The teaching and learning process typified a highly effective communication mechanism based on an appropriate diagnosis of individual needs. This cumulative change resulted from circular causation. It is argued that given appropriate conditions the vicious circle of anxiety can be transformed into a virtuous circle of learning.
Resumo:
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD
Resumo:
We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.
Resumo:
We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.
Resumo:
We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.
Resumo:
We study the effect of regularization in an on-line gradient-descent learning scenario for a general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labelled by a two-layer teacher network with an arbitrary number of hidden units which may be corrupted by Gaussian output noise. We examine the effect of weight decay regularization on the dynamical evolution of the order parameters and generalization error in various phases of the learning process, in both noiseless and noisy scenarios.
Resumo:
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison.
Resumo:
On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.
Resumo:
We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This work complements previous results on locally optimal rules, where only the rate of change in generalization error was considered. We maximize the total reduction in generalization error over the whole learning process and show how the resulting rule can significantly outperform the locally optimal rule.
Resumo:
In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.
Resumo:
Public policy becomes managerial practice through a process of implementation. There is an established literature within Implementation Studies which explains the variables and some of the processes involved in implementation, but less attention has been focused upon how public service managers convert new policy initiatives into practice. The research proposes that managers and their organisations have to go through a process of learning in order to achieve the implementation of public policy. Data was collected over a five year period from four case studies of capital investment appraisal in the British National Health Service. Further data was collected from taped interviews by key actors within the case studies. The findings suggest that managers do learn to implement policy and four factors are important in this learning process. These are; (i) the nature of bureaucratic responsibility; (ii) the motivation of actors towards learning; (iii) the passage of time which allows for the development of competence and (iv) the use of project team structures. The research has demonstrated that the conversion of policy into practice occurs through the operationalisation of solutions to policy problems via job tasks. As such it suggests that in understanding how policy is implemented, technical learning is more important than cultural learning, in this context. In conclusion, a "Model of Learned Implementation" is presented, together with a discussion of some of the implications of the research. These are the possible use of more pilot projects for new policy initiatives and the more systematic diffusion of knowledge about implementation solutions.