936 resultados para oxidized low density lipoproteins
Resumo:
The association of very-low-density lipoprotein (VLDL) with atherosclerosis remains controversial. However, studies have shown that oxidative modification of VLDL can promote foam cell formation, leading to the development of atherosclerosis. A rapid method is described which will allow the significance of VLDL oxidation to be assessed in clinical studies. VLDL was isolated from heparinized plasma by a 1-h, single spin ultracentrifugation. Total protein was standardized to 25 mg/L. Oxidation was promoted by the addition of copper ions (17.5 mu mol/L, final concentration) incubated at 37 degrees C. Conjugated diene production was followed at 234 nm. Total assay preparation time was 2 h. Urate greatly inhibited the oxidation of VLDL and was successfully removed by size exclusion chromatography. VLDL isolated from frozen plasma (-70 degrees C) was stable for 15 weeks. This simple, rapid method for the isolation of VLDL may be applied to assess the significance of VLDL oxidation in disease.
Resumo:
We report the discovery of the low-density, transiting giant planet WASP-31b. The planet is 0.48 Jupiter masses and 1.55 Jupiter radii. It is in a 3.4-day orbit around a metal-poor, late-F-type, V = 11.7 dwarf star, which is a member of a common proper motion pair. In terms of its low density, WASP-31b is second only to WASP-17b, which is a more highly irradiated planet of similar mass. Based in part on observations made with the HARPS spectrograph on the 3.6-m ESO telescope (proposal 085.C-0393) and with the CORALIE spectrograph and the Euler camera on the 1.2-m Euler Swiss telescope, both at the ESO La Silla Observatory, Chile.The photometric time-series and radial-velocity data used in this work are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A60
Resumo:
Background: We sought to determine if a common polymorphism can influence vulnerability to LDL cholesterol, and thereby influence the clinical benefit derived from therapies that reduce LDL cholesterol.
Resumo:
We have conducted an intervention trial to assess the effects of antioxidants and B-group vitamins on the susceptibility of low-density lipoprotein (LDL) to oxidation. A total of 509 men aged 30-49 from a local workforce were screened for total plasma homocysteine. The 132 selected (homocysteine concentration > or = 8.34 mumol/l) men were randomly assigned, using a factorial design, to one of four groups receiving supplementation with B group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, 0.02 mg cyanocobalamin), antioxidant vitamins (150 mg ascorbic acid, 67 mg alpha-tocopherol, 9 mg beta-carotene), B vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-week study. The lag time of LDL isolated ex vivo to oxidation (induced by 2 mumol/l cupric chloride) was increased in the two groups receiving antioxidants whether with (6.88 +/- 1.65 min) or without (8.51 +/- 1.77 min) B-vitamins, compared with placebo (-2.03 +/- 1.50) or B-vitamins alone (-3.34 +/- 1.08) (Mean +/- S.E., P <0.001). Antibodies to malondialdehyde (MDA) modified LDL were also measured, but there were no significant changes in titers of these antibodies in any group of subjects whether receiving antioxidants or not. Contrast analysis showed that there was no interaction between antioxidants and B-group vitamins. This study indicates that while B-group vitamins lower plasma homocysteine they do not have an antioxidant effect. Thus B-group vitamins and antioxidants appear to have separate, independent effects in reducing cardiovascular risk.
Resumo:
The epsilon-4 allele of apolipoprotein E (APOE) is associated with increased risk of Alzheimer's disease (AD), but the pathogenic mechanism is unknown. The 5-repeat allele of a CGG repeat polymorphism in the 5' untranslated region of the very low-density lipoprotein receptor (VLDL-R) gene, a receptor for apoE, has been found to be associated with increased risk of AD in a Japanese population. Other groups have been unable to replicate this in American Caucasian populations. A case-control study utilizing a clinically well-defined group of late-onset AD patients (n = 108) and age- and sex-matched control subjects (n = 108) from Northern Ireland was performed to test this association in a relatively homogeneous population. The 9,9 genotype of the VLDL-R was found to be significantly increased in patients compared to controls (P = 0.003; Pcorr = 0.035), leading to an increased risk of AD to subjects with this genotype (OR = 3.9; 95% CI, 1.52-11.25). In contrast to results from the Japanese study, the 5-repeat allele was found to be significantly reduced in the patient group when compared to controls (P = 0.008; Pcorr = 0.047). The results from this study suggest that individuals who have the 9,9 genotype of the VLDL-R gene are at increased risk of AD in Northern Ireland.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.