981 resultados para off-axis hybrid resonator
Resumo:
The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.
Resumo:
Experimental demonstrations of the use of a self-imaging resonator in the phase locking of two fibre lasers are presented. The output power of the phase-locked fibre laser array exceeded 2 W Successful attempts of phase locking show that the fibre laser array is not only capable of producing high Output Power but also large on-axis intensity by this method.
Resumo:
We analyze the mode behaviors for semiconductor lasers with an equilateral triangle resonator by deriving the mode field distribution and the eigenvalue equation. The eigenvalue equation shows that the longitudinal mode wavelength interval is equivalent to that of a Fabry-Perot cavity with the cavity length of 1.5a, where a is the side length of the equilateral triangle resonator. The transverse waveguiding is equivalent to as a strip waveguide with the width of root 3a/ 2, and the number of transverse modes supported by the resonator is limited by the total reflection condition on the sides of the equilateral triangle. Semiconductor microcavity laser with an equilateral triangle resonator is suitable to realize single mode operation, and the mode wavelength can be adjusted by changing the side length.
Resumo:
Negative differential resistance (NDR) and memory effect were observed in diodes based on 1,4-dibenzyl C60 (DBC) and zinc phthalocyanine doped polystyrene hybrid material. Certain negative starting sweeping voltages led to a reproducible NDR, making the hybrid material a promising candidate in memory devices. It was found that the introduction of DBC enhanced the ON/OFF current ratio and significantly improved the memory stability. The ON/OFF current ratio was up to 2 orders of magnitude. The write-read-erase-reread cycles were more than 10(6), and the retention time reached 10 000 s without current degradation.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.
Resumo:
A novel organic-inorganic hybrid complex [(CuCl)(2) (o-phen)](infinity) 1 (o-phen = o-phenanthroline) has been hydrothermally synthesized and structurally characterized by elemental analyses, XPS spectrum, TG analysis, and single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic system, space group P2(1)/n, a = 3.7285(7) Angstrom, b = 19.603(4) Angstrom, c = 16.757(3) Angstrom, beta = 95.83(3)degrees, V = 1218.4(4) Angstrom(3), Z = 4, lambda(MoKalpha) = 0.71073 Angstrom (R(F) = 0.0643 for 2559 reflections). Data were collected on an R-axis RAPID diffractometer at 293 K in the range of 1.60 < θ < 27.48degrees. The title compound exhibits a one-dimensional chain-like scaffolding constructed by the unusual [Cu3Cl3] hexagon motifs by, sharing opposite edges. Only Cu(1) sites of the [Cu3Cl3] hexagon are coordinated with N donors of o-phen groups. Furthermore, the three-dimensional supermolecular architecture is formed by C-H...Cl hydrogen bonds between o-phen groups and CuCl chains.
Resumo:
A novel three-dimensional fluorinated gallium phosphate has been hydrothermally,synthesized by using diethylenetriamine as an organic structure-directing agent. X-ray single crystal structure analysis indicates this compound crystallizes in the orthorhombic space group P-bca, a = 1. 605 6 (7) nm, b = 1.011 4 (4) nm, c=1. 854 6(5) nm, V=3. 011 6(19) nm(3), Z=4. The three-dimensional framework based on linkage of corner-sharing polyhedron PO4, GaO4F and GaO4F2 delimit ten-ring channels along b axis in which the triply protonated amines are located serving as charge compensating guests and supporters.
Resumo:
Advanced modulation formats have become increasingly important as telecoms engineers strive for improved tolerance to both linear and nonlinear fibre-based transmission impairments. Two important modulation schemes are Duobinary (DB) and Alternate-mark inversion (AMI) [1] where transmission enhancement results from auxiliary phase modulation. As advanced modulation formats displace Return-to-zero On-Off Keying (RZ-OOK), inter-modulation converters will become increasingly important. If the modulation conversion can be performed at high bitrates with a small number of operations per bit, then all-optical techniques may offer lower energy consumption compared to optical-electronic-optical approaches. In this paper we experimentally demonstrate an all-optical system incorporating a pair of hybrid-integrated semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) gates which translate RZ-OOK to RZ-DB or RZ-AMI at 42.6 Gbps. This scheme includes a wavelength conversion to arbitrary output wavelength and has potential for high-level photonic integration, scalability to higher bitrates, and should exhibit regenerative properties [2].
Resumo:
Heavy particle collisions, in particular low-energy ion-atom collisions, are amenable to semiclassical JWKB phase integral analysis in the complex plane of the internuclear separation. Analytic continuation in this plane requires due attention to the Stokes phenomenon which parametrizes the physical mechanisms of curve crossing, non-crossing, the hybrid Nikitin model, rotational coupling and predissociation. Complex transition points represent adiabatic degeneracies. In the case of two or more such points, the Stokes constants may only be completely determined by resort to the so-called comparison- equation method involving, in particular, parabolic cylinder functions or Whittaker functions and their strong-coupling asymptotics. In particular, the Nikitin model is a two transition-point one-double-pole problem in each half-plane corresponding to either ingoing or outgoing waves. When the four transition points are closely clustered, new techniques are required to determine Stokes constants. However, such investigations remain incomplete, A model problem is therefore solved exactly for scattering along a one-dimensional z-axis. The energy eigenvalue is b(2)-a(2) and the potential comprises -z(2)/2 (parabolic) and -a(2) + b(2)/2z(2) (centrifugal/centripetal) components. The square of the wavenumber has in the complex z-plane, four zeros each a transition point at z = +/-a +/- ib and has a double pole at z = 0. In cases (a) and (b), a and b are real and unitarity obtains. In case (a) the reflection and transition coefficients are parametrized by exponentials when a(2) + b(2) > 1/2. In case (b) they are parametrized by trigonometrics when a(2) + b(2) <1/2 and total reflection is achievable. In case (c) a and b are complex and in general unitarity is not achieved due to loss of flux to a continuum (O'Rourke and Crothers, 1992 Proc. R. Sec. 438 1). Nevertheless, case (c) coefficients reduce to (a) or (b) under appropriate limiting conditions. Setting z = ht, with h a real constant, an attempt is made to model a two-state collision problem modelled by a pair of coupled first-order impact parameter equations and an appropriate (T) over tilde-tau relation, where (T) over tilde is the Stueckelberg variable and tau is the reduced or scaled time. The attempt fails because (T) over tilde is an odd function of tau, which is unphysical in a real collision problem. However, it is pointed out that by applying the Kummer exponential model to each half-plane (O'Rourke and Crothers 1994 J. Phys. B: At. Mel. Opt. Phys. 27 2497) the current model is in effect extended to a collision problem with four transition points and a double pole in each half-plane. Moreover, the attempt in itself is not a complete failure since it is shown that the result is a perfect diabatic inelastic collision for a traceless Hamiltonian matrix, or at least when both diagonal elements are odd and the off-diagonal elements equal and even.
Resumo:
Cores from slopes east of the Great Barrier Reef (GBR) challenge traditional models for sedimentation on tropical mixed siliciclastic-carbonate margins. However, satisfactory explanations of sediment accumulation on this archetypal margin that include both hemipelagic and turbidite sedimentation remain elusive, as submarine canyons and their role in delivering coarse-grained turbidite deposits, are poorly understood. Towards addressing this problem we investigated the shelf and canyon system bordering the northern Ribbon Reefs and reconstructed the history of turbidite deposition since the Late Pleistocene. High-resolution bathymetric and seismic data show a large paleo-channel system that crosses the shelf before connecting with the canyons via the inter-reef passages between the Ribbon Reefs. High-resolution bathymetry of the canyon axis reveals a complex and active system of channels, sand waves, and local submarine landslides. Multi-proxy examination of three cores from down the axis of the canyon system reveals 18 turbidites and debrites, interlayered with hemipelagic muds, that are derived from a mix of shallow and deep sources. Twenty radiocarbon ages indicate that siliciclastic-dominated and mixed turbidites only occur prior to 31 ka during Marine Isotope Stage (MIS) 3, while carbonate-dominated turbidites are well established by 11 ka in MIS1 until as recently as 1.2 ka. The apparent lack of siliciclastic-dominated turbidites and presence of only a few carbonate-dominated turbidites during the MIS2 lowstand are not consistent with generic models of margin sedimentation but might also reflect a gap in the turbidite record. These data suggest that turbidite sedimentation in the Ribbon Reef canyons, probably reflects the complex relationship between the prolonged period (> 25 ka) of MIS3 millennial sea level changes and local factors such as the shelf, inter-reef passage depth, canyon morphology and different sediment sources. On this basis we predict that the spatial and temporal patterns of turbidite sedimentation could vary considerably along the length of the GBR margin.
Resumo:
1. Recent proliferation of hybridisation in response to anthropogenic ecosystem change, coupled with increasing evidence of the importance of ancient hybridisation events in the formation of many species, has moved hybridisation to the forefront of evolutionary theory.
2. In spite of this, the mechanisms (e. g. differences in trophic ecology) by which hybrids co-exist with parental taxa are poorly understood. A unique hybrid zone exists in Irish freshwater systems, whereby hybrid offspring off two non-native cyprinid fishes often outnumber both parental species.
3. Using stable isotope and gut content analyses, we determined the trophic interactions between sympatric populations of roach (Rutilus rutilus), bream (Abramis brama) and their hybrid in lacustrine habitats.
4. The diet of all three groups displayed little variation across the study systems, and dietary overlap was observed between both parental species and hybrids. Hybrids displayed diet, niche breadth and trophic position that were intermediate between the two parental species while also exhibiting greater flexibility in diet across systems.
Resumo:
Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses similar to 1.1 M-aS (TM), hybrid WDs in a binary system may easily approach the Chandrasekhar mass (M-Ch) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-M-Ch hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M-aS (TM) of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-M-Ch WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-M-Ch bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching M-Ch to be of the order of 1 per cent of the Galactic SN Ia rate.
Resumo:
Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle – the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters.
Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model.
Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle.
The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.
Resumo:
Laser transmission joining (LTJ) is growing in importance, and has the potential to become a niche technique for the fabrication of hybrid plastic-metal joints for medical device applications. The possibility of directly joining plastics to metals by LTJ has been demonstrated by a number of recent studies. However, a reliable and quantitative method for defining the contact area between the plastic and metal, facilitating calculation of the mechanical shear stress of the hybrid joints, is still lacking. A new method, based on image analysis using ImageJ, is proposed here to quantify the contact area at the joint interface. The effect of discolouration on the mechanical performance of the hybrid joints is also reported for the first time. Biocompatible polyethylene terephthalate (PET) and commercially pure titanium (Ti) were selected as materials for laser joining using a 200 W CW fibre laser system. The effect of laser power, scanning speed and stand-off distance between the nozzle tip and top surface of the plastic were studied and analysed by Taguchi L9 orthogonal array and ANOVA respectively. The surface morphology, structure and elemental composition on the PET and Ti surfaces after shearing/peeling apart were characterized by SEM, EDX, XRD and XPS.