919 resultados para network dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to explore the inhibitory mechanism of coumarins toward aldose reductase (ALR2), AutoDock and Gromacs software were used for docking and molecular dynamics studies on 14 coumarins (CM) and ALR2 protease. The docking results indicate that residues TYR48, HIS110, and TRP111 construct the active pocket of ALR2 and, besides van der Waals and hydrophobic interaction, CM mainly interact with ALR2 by forming hydrogen bonds to cause inhibitory behavior. Except for CM1, all the other coumarins take the lactone part as acceptor to build up the hydrogen bond network with active-pocket residues. Unlike CM3, which has two comparable binding modes with ALR2, most coumarins only have one dominant orientation in their binding sites. The molecular dynamics calculation, based on the docking results, implies that the orientations of CM in the active pocket show different stabilities. Orientation of CM1 and CM3a take an unstable binding mode with ALR2; their conformations and RMSDs relative to ALR2 change a lot with the dynamic process. While the remaining CM are always hydrogen-bonded with residues TYR48 and HIS110 through the carbonyl O atom of the lactone group during the whole process, they retain the original binding mode and gradually reach dynamic equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Douglas B. Murray, Manfred Beckmann, and Hiroaki Kitano. (2007). Regulation of yeast oscillatory dynamics. Proceedings of the National Academy of Sciences of the USA, 104 (7), 2241-2246 Sponsorship: Solution-Oriented Research for Science and Technology Agency to the Systems Biology Institute /21st Century Center of Excellence Program and Special Coordination Program of the Ministry of Education, Sports, Culture, Science, and Technology to Keio University RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the Dynamic Policy Routing (DPR) model that captures the propagation of route updates under arbitrary changes in topology or path preferences. DPR introduces the notion of causation chains where the route flap at one node causes a flap at the next node along the chain. Using DPR, we model the Gao-Rexford (economic) guidelines that guarantee the safety (i.e., convergence) of policy routing. We establish three principles of safe policy routing dynamics. The non-interference principle provides insight into which ASes can directly induce route changes in one another. The single cycle principle and the multi-tiered cycle principle provide insight into how cycles of routing updates can manifest in any network. We develop INTERFERENCEBEAT, a distributed algorithm that propagates a small token along causation chains to check adherence to these principles. To enhance the diagnosis power of INTERFERENCEBEAT, we model four violations of the Gao-Rexford guidelines (e.g., transiting between peers) and characterize the resulting dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams Vl --> V2, Vl --> MT, and Vl --> V2 --> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-ofcontrast and insensitive to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to directionof-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion; split motion; gamma motion and reverse-contrast gamma motion; delta motion; visual inertia; the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's Laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long-term soil carbon dynamics may be approximated by networks of linear compartments, permitting theoretical analysis of transit time (i.e., the total time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system) distributions. We compute and compare these distributions for different network. configurations, ranging from the simple individual compartment, to series and parallel linear compartments, feedback systems, and models assuming a continuous distribution of decay constants. We also derive the transit time and age distributions of some complex, widely used soil carbon models (the compartmental models CENTURY and Rothamsted, and the continuous-quality Q-Model), and discuss them in the context of long-term carbon sequestration in soils. We show how complex models including feedback loops and slow compartments have distributions with heavier tails than simpler models. Power law tails emerge when using continuous-quality models, indicating long retention times for an important fraction of soil carbon. The responsiveness of the soil system to changes in decay constants due to altered climatic conditions or plant species composition is found to be stronger when all compartments respond equally to the environmental change, and when the slower compartments are more sensitive than the faster ones or lose more carbon through microbial respiration. Copyright 2009 by the American Geophysical Union.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently developed an approach for testing the accuracy of network inference algorithms by applying them to biologically realistic simulations with known network topology. Here, we seek to determine the degree to which the network topology and data sampling regime influence the ability of our Bayesian network inference algorithm, NETWORKINFERENCE, to recover gene regulatory networks. NETWORKINFERENCE performed well at recovering feedback loops and multiple targets of a regulator with small amounts of data, but required more data to recover multiple regulators of a gene. When collecting the same number of data samples at different intervals from the system, the best recovery was produced by sampling intervals long enough such that sampling covered propagation of regulation through the network but not so long such that intervals missed internal dynamics. These results further elucidate the possibilities and limitations of network inference based on biological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – This study aims to investigate the pattern among 17 heterodox economic journals over a prolonged period to provide evidence about the social dynamics among the group of researchers who publish in them and the extent to which they hold or develop a collective identity as heterodox economists. Design/methodology/approach – Traditional approaches to citation analysis are extended by the use of techniques from social network analysis. In addition to citation counts, measures of network position and clique membership are used to identify key journals and turning points in a longitudinal analysis. Findings – Important shifts in the nature of citation within the network of journals are identified in the 1998-2001 period and evidence is found of the emergence of a collective identity. Research limitations/implications – The methods prove a valuable extension of citation analysis and also focus greater consideration on the social relationships that citations represent. They are well suited to addressing the principal limitation of the study, its restriction to journals within the defined community rather than journals in general. Originality/value – This extends traditional approaches to citation analysis, provides an important new technique in identifying emergent collective identities and provides insight into the history and nature of the heterodox economic community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An inverse food-web model for the western Antarctic Peninsula (WAP) pelagic food web was constrained with data from Palmer Long Term Ecological Research (PAL-LTER) project annual austral summer sampling cruises. Model solutions were generated for 2 regions with Adelie penguin Pygoscelis adeliae colonies presenting different population trends (a northern and a southern colony) for a 12 yr period (1995-2006). Counter to the standard paradigm, comparisons of carbon flow through bacteria, microzooplankton, and krill showed that the diatom-krill-top predator food chain is not the dominant pathway for organic carbon exchanges. The food web is more complex, including significant contributions by microzooplankton and the microbial loop. Using both inverse model results and network indices, it appears that in the northern WAP the food web is dominated by the microbial food web, with a temporal trend toward its increasing importance. The dominant pathway for the southern WAP food web varies from year to year, with no detectable temporal trend toward dominance of microzooplankton versus krill. In addition, sensitivity analyses indicated that the northern colony of Adelie penguins, whose population size has been declining over the past 35 yr, appears to have sufficient krill during summer to sustain its basic metabolic needs and rear chicks, suggesting the importance of other processes in regulating the Adelie population decline.