846 resultados para multi-scale
Resumo:
Résumé : Face à l’accroissement de la résolution spatiale des capteurs optiques satellitaires, de nouvelles stratégies doivent être développées pour classifier les images de télédétection. En effet, l’abondance de détails dans ces images diminue fortement l’efficacité des classifications spectrales; de nombreuses méthodes de classification texturale, notamment les approches statistiques, ne sont plus adaptées. À l’inverse, les approches structurelles offrent une ouverture intéressante : ces approches orientées objet consistent à étudier la structure de l’image pour en interpréter le sens. Un algorithme de ce type est proposé dans la première partie de cette thèse. Reposant sur la détection et l’analyse de points-clés (KPC : KeyPoint-based Classification), il offre une solution efficace au problème de la classification d’images à très haute résolution spatiale. Les classifications effectuées sur les données montrent en particulier sa capacité à différencier des textures visuellement similaires. Par ailleurs, il a été montré dans la littérature que la fusion évidentielle, reposant sur la théorie de Dempster-Shafer, est tout à fait adaptée aux images de télédétection en raison de son aptitude à intégrer des concepts tels que l’ambiguïté et l’incertitude. Peu d’études ont en revanche été menées sur l’application de cette théorie à des données texturales complexes telles que celles issues de classifications structurelles. La seconde partie de cette thèse vise à combler ce manque, en s’intéressant à la fusion de classifications KPC multi-échelle par la théorie de Dempster-Shafer. Les tests menés montrent que cette approche multi-échelle permet d’améliorer la classification finale dans le cas où l’image initiale est de faible qualité. De plus, l’étude effectuée met en évidence le potentiel d’amélioration apporté par l’estimation de la fiabilité des classifications intermédiaires, et fournit des pistes pour mener ces estimations.
Resumo:
We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.
Resumo:
Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Resumo:
This study examined the effect that temporal order within the entrepreneurial discovery-exploitation process has on the outcomes of venture creation. Consistent with sequential theories of discovery-exploitation, the general flow of venture creation was found to be directed from discovery toward exploitation in a random sample of nascent ventures. However, venture creation attempts which specifically follow this sequence derive poor outcomes. Moreover, simultaneous discovery-exploitation was the most prevalent temporal order observed, and venture attempts that proceed in this manner more likely become operational. These findings suggest that venture creation is a multi-scale phenomenon that is at once directional in time, and simultaneously driven by symbiotically coupled discovery and exploitation.
Resumo:
This study examined the effect that temporal order within the entrepreneurial discovery exploitation process has on the outcomes of venture creation. Consistent with sequential theories of discovery-exploitation, the general flow of venture creation was found to be directed from discovery toward exploitation in a random sample of nascent ventures. However, venture creation attempts which specifically follow this sequence derive poor outcomes. Moreover, simultaneous discovery-exploitation was the most prevalent temporal order observed, and venture attempts that proceed in this manner more likely become operational. These findings suggest that venture creation is a multi-scale phenomenon that is at once directional in time, and simultaneously driven by symbiotically coupled discovery and exploitation.
Resumo:
Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs’ mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.
Resumo:
LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.
Resumo:
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Resumo:
This paper presents a new multi-scale place recognition system inspired by the recent discovery of overlapping, multi-scale spatial maps stored in the rodent brain. By training a set of Support Vector Machines to recognize places at varying levels of spatial specificity, we are able to validate spatially specific place recognition hypotheses against broader place recognition hypotheses without sacrificing localization accuracy. We evaluate the system in a range of experiments using cameras mounted on a motorbike and a human in two different environments. At 100% precision, the multiscale approach results in a 56% average improvement in recall rate across both datasets. We analyse the results and then discuss future work that may lead to improvements in both robotic mapping and our understanding of sensory processing and encoding in the mammalian brain.