893 resultados para mesoporous silica naoparticles
Resumo:
This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)(3)Si-OH, hydrogen-bonded, (SiO)(3)Si-OH-OH-Si(SiO)(3), and geminal, (SiO)(2)Si(OH)(2), can be observed. The number of silanol groups/nm(2), alpha(OH), as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol(-1), respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.
Resumo:
The Encyclopedia of Nanoscience and NanotechnologyTM is the world's first encyclopedia ever published in the field of nanotechnology. The 10-volume Encyclopedia is an unprecedented single reference source that provides an ideal introduction and overview of recent advances and emerging new aspects of nanotechnology, spanning from science to engineering to medicine. Although there are many books/handbooks and journals focused on nanotechnology, no encyclopedic reference work has been published as of today. The Encyclopedia fills this gap to provide basic information on all fundamental and applied aspects of nanotechnology by drawing on two decades of pioneering research. It is the only scientific work of its kind since the beginning of the field of nanotechnology, bringing together core knowledge and the very latest advances. About 400 review chapters and hundreds of entries written by over 1,000 of the world's leading scientists. It is written for all audience levels, allowing non-scientists to understand the nanotechnology while providing up-to-date information to active scientists and experts in the field. This outstanding encyclopedia is an indispensable source for research professionals, technology investors and developers seeking the most up-to-date information on nanotechnology, among a wide range of disciplines, from science to engineering to medicine.
Resumo:
A quartz crystal microbalance modified by the attachment of silica particles derivatized with the aminopolycarboxylate ligand N-[(3-trimethoxysilyl)propyl]ethylenediamine-N,N',N'-triacetic acid has been employed to assess conditions under which mercury (II), lead (II), and silver (I) nitrates may be separated in aqueous solution. The separation protocol, which involved removal of Hg(II), as [HgI4](2-), and Pb(II) with H+ was successfully applied to a batchwise separation of the 3 metal ions.
Resumo:
Large chemical libraries can be synthesized on solid-support beads by the combinatorial split-and-mix method. A major challenge associated with this type of library synthesis is distinguishing between the beads and their attached compounds. A new method of encoding these solid-support beads, 'colloidal bar-coding', involves attaching fluorescent silica colloids ('reporters') to the beads as they pass through the compound synthesis, thereby creating a fluorescent bar code on each bead. In order to obtain sufficient reporter varieties to bar code extremely large libraries, many of the reporters must contain multiple fluorescent dyes. We describe here the synthesis and spectroscopic analysis of various mono- and multi-fluorescent silica particles for this purpose. It was found that by increasing the amount of a single dye introduced into the particle reaction mixture, mono- fluorescent silica particles of increasing intensities could be prepared. This increase was highly reproducible and was observed for six different fluorescent dyes. Multi-fluorescent silica particles containing up to six fluorescent dyes were also prepared. The resultant emission intensity of each dye in the multi-fluorescent particles was found to be dependent upon a number of factors; the hydrolysis rate of each silane-dye conjugate, the magnitude of the inherent emission intensity of each dye within the silica matrix, and energy transfer effects between dyes. We show that by varying the relative concentration of each silane-dye conjugate in the synthesis of multi-fluorescent particles, it is possible to change and optimize the resultant emission intensity of each dye to enable viewing in a fluorescence detection instrument.
Resumo:
The discovery of periodic mesoporous MCM-41 and related molecular sieves has attracted significant attention from a fundamental as well as applied perspective. They possess well-defined cylindrical/hexagonal mesopores with a simple geometry, tailored pore size, and reproducible surface properties. Hence, there is an ever-growing scientific interest in the challenges posed by their processing and characterization and by the refinement of various sorption models. Further, MCM-41-based materials are currently under intense investigation with respect to their utility as adsorbents, catalysts, supports, ion-exchangers, and molecular hosts. In this article, we provide a critical review of the developments in these areas with particular emphasis on adsorption characteristics, progress in controlling the pore sizes, and a comparison of pore size distributions using traditional and newer models. The model proposed by the authors for adsorption isotherms and criticalities in capillary condensation and hysteresis is found to explain unusual adsorption behavior in these materials while providing a convenient characterization tool.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48, and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet–visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons.
Resumo:
Silica xerogels were prepared by a sol-gel process catalyzed by acid with tetraethylorthosilicate, and using an organic covalent ligand template (methyltriethoxysilane) or a noncovalent template C6 surfactant (triethylhexylammonium bromide). The influence of hydrotreatment on the structure of templated xerogels is examined in terms of surface area, micropore volume, average pore size, and pore size distribution, and compared against a blank xerogel (nontemplated). The role of surface functional groups was evaluated using Si-29 nuclear magnetic resonance. The structural integrity of the xerogel was maintained to a large extent in samples that had a high contribution of Q(4) species (siloxane groups). Xerogel matrix densification occurred when there was a large concentration of Q(3) and Q(2) species (silanol groups), which also were responsible for increased hydrophilicity. The templated xerogels resulted in up to a 25% concentration of methyl functional groups (T-3 and T-2 species), leading to hydrophobic xerogels. The best results in terms of structural integrity and hydrophobicity were obtained with templated xerogels prepared with the C6 surfactant. The results in this study suggest that surfactant-enhanced condensation reactions lead to structures with a high contribution of Q(4) groups, which are not susceptible to water attack, but are strong enough to oppose matrix densification during rehydration.
Resumo:
Titania sol-pillared clay (TiO2 PILC) and silica-titania sol-pillared clay (SiO2-TiO2 PILC) were synthesized by the sol-gel method. Supercritical drying (SCD) and treatment with quaternary ammonium surfactants were used to tailor the pore structure of the resulting clay. It was found that SCD approach increased the external surface area of the PILCs dramatically and that treatment with surfactants could be used to tailor pore size because the mesopore formation in the galleries between the clay layers follows the templating mechanism as observed in the synthesis of MCM-41 materials. Highly mesoporous solids were thus obtained. In calcined TiO2 PILC, ultrafine crystallites in anatase phase, which are active for photocatalytic oxidation of organics, were observed. In SiO2-TiO2 PILCs and their derivatives, titanium was highly dispersed in the matrix of silica and no crystal phase was observed. The highly dispersed titanium sites are good catalytic centers for selective oxidation of organic compounds. (C) 2001 Academic Press.
Resumo:
A simple method to characterize the micro and mesoporous carbon media is discussed. In this method, the overall adsorption quantity is the sum of capacities of all pores (slit shape is assumed), in each of which the process of adsorption occurs in two sequential steps: the multi-layering followed by pore filling steps. The critical factor in these two steps is the enhancement of the pressure of occluded 'free' molecules in the pore as well as the enhancement of the adsorption layer thickness. Both of these enhancements are due to the overlapping of the potential fields contributed by the two opposite walls. The classical BET and modified Kelvin equations are assumed to be applicable for the two steps mentioned above, with the allowance for the enhanced pore pressure, the enhanced adsorption energy and the enhanced BET constant,all of which vary with pore width. The method is then applied to data of many carbon samples of different sources to derive their respective pore size distributions, which are compared with those obtained from DFT analysis. Similar pore size distributions (PSDs) are observed although our method gives sharper distribution. Furthermore, we use our theory to analyze adsorption data of nitrogen at 77 K and that of benzene at 303 K (ambient temperature). The PSDs derived from these two different probe molecules are similar, with some small differences that could be attributed to the molecular properties, such as the collision diameter. Permeation characteristics of sub-critical fluids are also discussed in this paper. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica-filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100 degreesC and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60-90 degreesC). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.
Resumo:
High quality MSS membranes were synthesised by a single-step and two-step catalysed hydrolyses employing tetraethylorthosilicate (TEOS), absolute ethanol (EtOH), I M nitric acid (HNO3) and distilled water (H2O). The Si-29 NMR results showed that the two-step xerogels consistently had more contribution of silanol groups (Q(3) and Q(2)) than the single-step xerogel. According to the fractal theory, high contribution of Q(2) and Q(3) species are responsible for the formation of weakly branched systems leading to low pore volume of microporous dimension. The transport of diffusing gases in these membranes is shown to be activated as the permeance increased with temperature. Albeit the permeance of He for both single-step and two-step membranes are very similar, the two-step membranes permselectivity (ideal separation factor) for He/CO2 (69-319) and He/CH4 (585-958) are one to two orders of magnitude higher than the single-step membranes results of 2-7 and 69, respectively. The two-step membranes have high activation energy for He and H-2 permeance, in excess of 16 kJ mol(-1). The mobility energy for He permeance is three to six-fold higher for the two-step than the single-step membranes. As the mobility energy is higher for small pores than large pores and coupled with the permselectivity results, the two-step catalysed hydrolysis sol-gel process resulted in the formation of pore sizes in the region of 3 Angstrom while the single-step process tended to produce slightly larger pores. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The synthesis and characterization of high-quality mesoporous silicoaluminophosphates (SAPOs) with a hexagonally arranged pore structure and a good thermal stability are described. The influence of some important synthesis parameters including temperature, time, and Si content in the synthesis gel was examined. The local environments of Al, P, and Si were investigated using MAS NMR spectroscopy. The acidity of the mesoporous SAPOs was studied and compared with those of aluminosilicate MCM-41 and SAPO-5. Results show that both the synthesis temperature and time have a significant impact on the formation of mesoporous SAPOs, whereas the presence of Si in the synthesis gel has a direct influence on the structure type and the quality of the resulting mesoporous SAPO materials. High-quality mesoporous SAPOs can be synthesized from the synthesis gels with Si/Al ratio smaller than 0.5 in the presence of cationic surfactants in a weakly basic aqueous solution. The mesoporous SAPO materials show interesting acidity properties, possessing both strong and mild sites. (C) 2002 Elsevier Science Inc. All rights reserved.