1000 resultados para mecanismo de defesa
Resumo:
The mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds (IRPC) is reviewed. The presence of IRPC leads to the formation of a larger number of free radicals. The relationship between the redox potential and the IRPC structure is discussed. The effect of humic substances in the degradation of xenobiotics is also included, since these substances are able to reduce metallic ions. The natural occurrence of Fe3+/H2O2/IRPC in wood biodegradation processes, as well as their application is also discussed. The review concludes with the advantages of the Fe3+/H2O2/IRPC systems and some considerations for further process optimization and their applications at industrial levels.
Resumo:
The present article reviews different aspects of the chemistry of two widely used β-lactam antibiotics Clavulanic Acid and Cephamycin C. The article discusses important details of the biosynthesis of these compounds, their action mechanism and, principally, the methods employed in their isolation and purification, in accordance with the available literature. Despite the large quantity of available articles and patents concerning β-lactam antibiotics, those which describe the isolation and purification of Clavulanic Acid and Cephamycin C are rare. Overall, the intention of this article is to discuss the up-to-date scientific research related to the compounds under review.
Resumo:
This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl2(PH3)2Ru=CH2. The geometries and energy profile are similar to the Grubbs metilydene (Cl2(PCy3)2Ru=CH2 real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbonene) followed by dissociative substitution of a phosphine ligand with norbonene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol-1.
Resumo:
The AIDS epidemy has spread out and led to the diversification on the research for new antiviral drugs. Natural products, especially those derived from plants, are well-recognized as excellent sources of new drugs. Several of them have inhibitory activity against HIV replication, and some have been already clinically tested, with favorable results. This review presents the biochemical basis of the viral cycle and the research up to date on the identification, determination of the mechanism of biological action together with the therapeutical potential of plants-derived natural products, in the inhibition of HIV.
Resumo:
The present paper aims to interpret the SO2 diffusion mechanism process for two different limestones: a calcite and a dolomite. In previous study, the apparent activation energies for sulfation reaction were between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite. Using nitrogen porosimetry it was possible to observe that the dolomite presents mesopores of 0.03 μm, while the calcite presents mesopores of 0.01 μm. The evaluation of limestones porous structure together with their kinetic parameters, allowed concluding that the diffusion mechanism follows Fick law and Knudsen law for dolomite and calcite, respectively.
Resumo:
A software based in the Monte Carlo method has been developed aiming the teaching of the Perrin´s model for static luminescence quenching. This software allows the student to easily simulate the luminescence decays of emissive molecules in the presence of quenching ones. The software named PERRIN was written for FreeBASIC compiler and it can be applied for systems where the molecules remain static during its excited state lifetime. The good agreement found between the simulations and the expected theoretical results shows that it can be used for the luminescence and excited states decay kinetic teaching.
Resumo:
The ozonolysis reaction is widely used in the academy and in industry. The first reports about the existence of the ozone molecule were made over 200 years ago. Several ideas and assumptions were made to understand the chemical properties of the ozone molecule and the ozonolysis mechanism. The intent of this paper is not to be an extensive review about ozone chemistry or ozonolysis reactions, but to highlight how the rational process was developed and how conclusions were drawn at a time with limited instrumentation.
Resumo:
Chemical agents are substances used for their toxic effects on humans, animals and plants. The main objective of chemical defense is to develop systems that reduce these effects while minimizing impact on the operational capacity of military troops. In this work, a report on the development of chemical warfare agents since the First World War and their classification is presented. Special attention is given to neurotoxic agents, the most lethal group of chemical agents known to date.
Resumo:
The emission of light by living organisms, bioluminescence, has been studied since the nineteenth century. However, some bioluminescent systems, such as fungi, remain poorly understood. The emitter, the two enzymes involved, and the reaction mechanism have not yet been unraveled. Moreover, the ecological role and evolutionary significance for fungal luminescence is also unknown. It is hoped that comprehensive research on fungal bioluminescent systems will generate knowledge and tools for academic and applied sciences. This review discusses the distribution of bioluminescent fungi on Earth, attempts to elucidate the mechanism involved in light emission, and presents preliminary results on the evolution and ecological role of fungal bioluminescence.
Resumo:
The identification and manipulation of chemical compounds involved in vital activities of arthropods have the potential for developing less aggressive pest control strategies. Herbivory induces the emission of volatile organic compounds involved in the recruitment of natural enemies, plant-plant interactions and repellency of other herbivores. In this report, we review the main chemical groups of volatile organic compounds and their ecological functions, provide an overview of the signal transduction pathways activated upon herbivory, and review the current state of knowledge for practical applications in pest management. We conclude by proposing perspectives for future research.
Resumo:
In this study, the influence of mechanical activation by intensive ball milling of a stoichiometric mixture of talc, kaolin, and alumina on the mechanism and kinetics of cordierite (2MgO·2Al2O3·5SiO2) formation was evaluated. The raw materials were characterized by chemical analysis, X-ray diffraction (XRD), laser diffraction, and helium pycnometry. The kinetics and mechanism of cordierite formation were studied by XRD, differential thermal analysis, and dilatometry in order to describe the phase formation as a function of temperature (1000-1400 ºC), time of thermochemical treatment (0-4 h), and grinding time of the mixture (0-45 min). Finally, the optimal conditions of the thermochemical treatment that ensured the formation of cordierite were determined: milling time of 45 min and thermal treatment at 1280 ºC for 1 h.
Resumo:
A software that includes both Stochastic and Molecular Dynamics procedures has been developed with the aim of visualizing the Stern-Volmer kinetic mechanism of dynamic luminescence quenching. The software allows the student to easily simulate and graphically visualize the molecular collisions, the molecular speed distributions, the luminescence decay curves, and the Stern-Volmer graphs. The software named "SternVolmer" is written for the FreeBASIC compiler and can be applied to dynamic systems where luminescent molecules, during their excited state lifetimes, are able to collide with quenching molecules (collisional quenching). The good agreement found between the simulations and the expected results shows that this software can be used as an effective teaching aid for the study of luminescence and kinetic decay of excited states.
Resumo:
We report an alternative method for the synthesis of 2-(1,3-dithian-2-ylidene)-acetonitrile using 3-(4-chlorophenyl)-3-oxopropanenitrile and carbon disulfide as starting materials. The methanolysis of the intermediate 3-(4-chlorophenyl)-2-(1,3-dithian-2-ylidene)-3-oxopropanenitrile occurs via three possible intermediates, leading to the formation of the product at a 75% overall yield. Molecular modeling simulation of the reaction pathway using B3LYP 6-311G++(2df,2p) justified the proposed reaction mechanism.
Resumo:
A explosão oxidativa é uma resposta de defesa da planta após o reconhecimento do patógeno, conduzindo à reação de hipersensibilidade (HR). Esta resposta é devido à geração de espécies ativas de oxigênio (ROS ou EAO's), tais como H2O2, O2-, e OH- As espécies ativas de oxigênio possuem várias funções na resposta de defesa da planta. Peróxido de higrogênio (H2O2) pode ser diretamente tóxico ao patógeno e está envolvido com o fortalecimento da parede celular, uma vez que o H2O2 é necessário para a biossíntese de lignina. Peróxido de hidrogênioatua também como mensageiro secundário, sendo responsável pela ativação da hidrolase do ácido benzóico, enzima responsável pela conversão do ácido benzóico em ácido salicílico. A explosão oxidativa não está confinada somente à HR macroscópica, uma vez que explosões oxidativas secundárias poderão ocorrer nos tecidos distantes, causando micro-HR's e conduzindo à resistência sistêmica adquirida (SAR), a qual é mediada pelo ácido salicílico como um sinal. Portanto, a ocorrência de HR e SAR é dependente da cascata de sinalização derivada da explosão oxidativa, que por sua vez é um evento inicial na resposta da planta contra a invasão do patógeno.
Resumo:
Os níveis de fenóis solúveis totais e a atividade das enzimas oxidativas polifenoloxidases e peroxidases foram estudados em tecidos foliares sadios dos clones de cacaueiro (Theobroma cacao) SCA 6, TSH 1188, TSH 565, TSH 516, EET 397, EET 62, TSA 641, SIAL 505, RIM 106, RIM 52, SIC 24 e UF 613, com o objetivo de estudar possível(is) mecanismo(s) de resistência de cacaueiro a Crinipellis perniciosa. Os níveis de fenóis solúveis totais foram mais elevados em clones de cacaueiro com resistência a C. perniciosa, e podem estar contribuindo na resposta de defesa contra o patógeno. A atividade de polifenoloxidases foi menor nos clones resistentes do que nos clones suscetíveis. A atividade de peroxidases em folhas maduras foi menor nos clones resistentes, mas em folhas jovens não foi possível estabelecer uma relação da atividade de peroxidase com os clones resistentes. Os níveis de fenóis e a atividade das enzimas oxidativas correlacionaram-se de forma inversa na maioria dos clones estudados, o que pode indicar uma inibição das enzimas peroxidases e polifenoloxidases pelos compostos fenólicos.