838 resultados para linear mixed-effects models
Resumo:
BACKGROUND: To develop evidence-based approaches for reducing sedentary behavior, there is a need to identify the specific settings where prolonged sitting occurs, associated factors, and variations. PURPOSE: To examine the sociodemographic and health factors associated with mid-aged adults' sitting time in three contexts and variations between weekdays and weekend days. METHODS: A mail survey was sent to 17,000 adults (aged 40-65 years) in 2007; 11,037 responses were received (68.5%); and 7719 were analyzed in 2010. Respondents indicated time spent sitting on a usual weekday and weekend day for watching TV, general leisure, and home computer use. Multivariate linear mixed models with area-level random intercepts were used to examine (1) associations between sociodemographic and health variables and sitting time, and (2) interaction effects of weekday/weekend day with each of gender, age, education, and employment status, on sitting time. RESULTS: For each context, longer sitting times were reported by those single and living alone, and those whose health restricted activity. For watching TV, longer sitting times were reported by men; smokers; and those with high school or lower education, not in paid employment, in poor health, and with BMI ≥25. For general leisure, longer sitting times were reported by women, smokers, and those not employed full-time. For home computer use, longer sitting times were reported by men; and those aged 40-44 years, with university qualifications; in the mid-income range; and with BMI ≥30. Sitting times tended to be longer on weekend days than weekdays, although the extent of this differed among sociodemographic groups. CONCLUSIONS: Sociodemographic and health factors associated with sitting time differ by context and between weekdays and weekend days.
Resumo:
Objective - Report long term outcomes of the NOURISH randomized controlled trial (RCT) that evaluated a universal intervention commencing in infancy to provide anticipatory guidance to first-time mothers on ‘protective’ complementary feeding practices which were hypothesized to reduce childhood obesity risk. Subjects and Methods - The NOURISH RCT enrolled 698 mothers (mean age 30.1 years, SD=5.3) with healthy term infants (51% female). Mothers were randomly allocated to usual care or to attend two 6-session, 12-week group education modules. Outcomes were assessed five times: baseline (infants 4.3 months); 6 months after module 1 (infants 14 months); 6 months after module 2 (infants 2 years) and at 3.5 and 5 years of age. Maternal feeding practices were self-reported using validated questionnaires. BMI Z-score was calculated from measured child height and weight. Linear Mixed Models evaluated intervention (group) effect across time. Results - Retention at 5 years of age was 61%. Across ages 2-5 years, intervention mothers reported less frequent use of non-responsive feeding practices on 6/9 scales. At 5 years they also reported more appropriate responses to food refusal on 7/12 items (Ps ≤.05). No statistically significant group effect was noted for anthropometric outcomes (BMI Z-score: P=.06), or the prevalence of overweight/obesity (control 13.3% vs. intervention 11.4%, P=.66). Conclusions - Anticipatory guidance on complementary feeding resulted in first-time mothers reporting increased use of protective feeding practices. These intervention effects were sustained up to five years of age and were paralleled by a non-significant trend for lower child BMI Z-scores at all post-intervention assessment points.
Resumo:
The Queensland east coast trawl fishery is by far the largest prawn and scallop otter trawl fleet in Australia in terms of number of vessels, with 504 vessels licensed to fish for species including tiger prawns, endeavour prawns, red spot king prawns, eastern king prawns and saucer scallops by the end of 2004. The vessel fleet has gradually upgraded characteristics such as engine power and use of propeller nozzles, quad nets, global positioning systems (GPS) and computer mapping software. These changes, together with the ever-changing profile of the fleet, were analysed by linear mixed models to quantify annual efficiency increases of an average vessel at catching prawns or scallops. The analyses included vessel characteristics (treated as fixed effects) and vessel identifier codes (treated as random effects). For the period from 1989 to 2004 the models estimated overall fishing power increases of 6% in the northern tiger, 6% in the northern endeavour, 12% in the southern tiger, 18% in the red spot king, 46% in the eastern king prawn and 15% in the saucer scallop sector. The results illustrate the importance of ongoing monitoring of vessel and fleet characteristics and the need to use this information to standardise catch rate indices used in stock assessment and management.
Resumo:
- Objective To evaluate dietary intake impact outcomes up to 3.5 years after the NOURISH early feeding intervention (concealed allocation, assessor masked RCT). - Methods 698 first-time mothers with healthy term infants were allocated to receive anticipatory guidance on protective feeding practices or usual care. Outcomes were assessed at 2, 3.7 and 5 years (3.5 years post-intervention). Dietary intake was assessed by 24-hour recall and Child Dietary Questionnaire. Mothers completed a food preference questionnaire and Children’s Eating Behaviour Questionnaire. Linear mixed models assessed group, time and time x group effects. - Results There were no group or time x group effects for fruit, vegetables, discretionary food and non-milk sweetened beverages intake. Intervention children showed a higher preference for fruits (74.6% vs 69.0% liked, P<.001), higher Child Dietary Questionnaire score for fruit and vegetables (15.3 vs 14.5, target>18, P=0.03), lower food responsiveness (2.3 vs 2.4, of maximum 5, P=.04) and higher satiety responsiveness (3.1 vs 3.0, of maximum 5, P=.04). - Conclusions Compared to usual care, an early feeding intervention providing anticipatory guidance regarding positive feeding practices led to small improvements in child dietary score, food preferences and eating behaviours up to 5 years of age, but not in dietary intake measured by 24-hour recall.
Resumo:
Introduction Recent reports have highlighted the prevalence of vitamin D deficiency and suggested an association with excess mortality in critically ill patients. Serum vitamin D concentrations in these studies were measured following resuscitation. It is unclear whether aggressive fluid resuscitation independently influences serum vitamin D. Methods Nineteen patients undergoing cardiopulmonary bypass were studied. Serum 25(OH)D3, 1α,25(OH)2D3, parathyroid hormone, C-reactive protein (CRP), and ionised calcium were measured at five defined timepoints: T1 - baseline, T2 - 5 minutes after onset of cardiopulmonary bypass (CPB) (time of maximal fluid effect), T3 - on return to the intensive care unit, T4 - 24 hrs after surgery and T5 - 5 days after surgery. Linear mixed models were used to compare measures at T2-T5 with baseline measures. Results Acute fluid loading resulted in a 35% reduction in 25(OH)D3 (59 ± 16 to 38 ± 14 nmol/L, P < 0.0001) and a 45% reduction in 1α,25(OH)2D3 (99 ± 40 to 54 ± 22 pmol/L P < 0.0001) and i(Ca) (P < 0.01), with elevation in parathyroid hormone (P < 0.0001). Serum 25(OH)D3 returned to baseline only at T5 while 1α,25(OH)2D3 demonstrated an overshoot above baseline at T5 (P < 0.0001). There was a delayed rise in CRP at T4 and T5; this was not associated with a reduction in vitamin D levels at these time points. Conclusions Hemodilution significantly lowers serum 25(OH)D3 and 1α,25(OH)2D3, which may take up to 24 hours to resolve. Moreover, delayed overshoot of 1α,25(OH)2D3 needs consideration. We urge caution in interpreting serum vitamin D in critically ill patients in the context of major resuscitation, and would advocate repeating the measurement once the effects of the resuscitation have abated.
Resumo:
Native species' response to the presence of invasive species is context specific. This response cannot be studied in isolation from the prevailing environmental stresses in invaded habitats such as seasonal drought. We investigated the combined effects of an invasive shrub Lantana camara L. (lantana), seasonal rainfall and species' microsite preferences on the growth and survival of 1,105 naturally established seedlings of native trees and shrubs in a seasonally dry tropical forest. Individuals were followed from April 2008 to February 2010, and growth and survival measured in relation to lantana density, seasonality of rainfall and species characteristics in a 50-ha permanent forest plot located in Mudumalai, southern India. We used a mixed effects modelling approach to examine seedling growth and generalized linear models to examine seedling survival. The overall relative height growth rate of established seedlings was found to be very low irrespective of the presence or absence of dense lantana. 22-month growth rate of dry forest species was lower under dense lantana while moist forest species were not affected by the presence of lantana thickets. 4-month growth rates of all species increased with increasing inter-census rainfall. Community results may be influenced by responses of the most abundant species, Catunaregam spinosa, whose growth rates were always lower under dense lantana. Overall seedling survival was high, increased with increasing rainfall and was higher for species with dry forest preference than for species with moist forest preference. The high survival rates of naturally established seedlings combined with their basal sprouting ability in this forest could enable the persistence of woody species in the face of invasive species.
Resumo:
Esta tese investiga os efeitos agudos da poluição atmosférica no pico de fluxo expiratório (PFE) de escolares com idades entre 6 e 15 anos, residentes em municípios da Amazônia Brasileira. O primeiro artigo avaliou os efeitos do material particulado fino (PM2,5) no PFE de 309 escolares do município de Alta Floresta, Mato Grosso (MT), durante a estação seca de 2006. Modelos de efeitos mistos foram estimados para toda a amostra e estratificados por turno escolar e presença de sintomas de asma. O segundo artigo expõe as estratégias utilizadas para a determinação da função de variância do erro aleatório dos modelos de efeitos mistos. O terceiro artigo analisa os dados do estudo de painel com 234 escolares, realizado na estação seca de 2008 em Tangará da Serra, MT. Avaliou-se os efeitos lineares e com defasagem distribuída (PDLM) do material particulado inalável (PM10), do PM2,5 e do Black Carbon (BC) no PFE de todos os escolares e estratificados por grupos de idade. Nos três artigos, os modelos de efeitos mistos foram ajustados por tendência temporal, temperatura, umidade e características individuais. Os modelos também consideraram o ajuste da autocorrelação residual e da função de variância do erro aleatório. Quanto às exposições, foram avaliados os efeitos das exposições de 5hs, 6hs, 12hs e 24hs, no dia corrente, com defasagens de 1 a 5 dias e das médias móveis de 2 e 3 dias. No que se refere aos resultados de Alta Floresta, os modelos para todas as crianças indicaram reduções no PFE variando de 0,26 l/min (IC95%: 0,49; 0,04) a 0,38 l/min (IC95%: 0,71; 0,04), para cada aumento de 10g/m3 no PM2,5. Não foram observados efeitos significativos da poluição no grupo das crianças asmáticas. A exposição de 24hs apresentou efeito significativo no grupo de alunos da tarde e no grupo dos não asmáticos. A exposição de 0hs a 5:30hs foi significativa tanto para os alunos da manhã quanto para a tarde. Em Tangará da Serra, os resultados mostraram reduções significativas do PFE para aumentos de 10 unidades do poluente, principalmente para as defasagens de 3, 4 e 5 dias. Para o PM10, as reduções variaram de 0,15 (IC95%: 0,29; 0,01) a 0,25 l/min (IC95%: 0,40 ; 0,10). Para o PM2,5, as reduções estiveram entre 0,46 l/min (IC95%: 0,86 to 0,06 ) e 0,54 l/min (IC95%: 0,95; 0,14). E no BC, a redução foi de aproximadamente 0,014 l/min. Em relação ao PDLM, efeitos mais importantes foram observados nos modelos baseados na exposição do dia corrente até 5 dias passados. O efeito global foi significativo apenas para o PM10, com redução do PFE de 0,31 l/min (IC95%: 0,56; 0,05). Esta abordagem também indicou efeitos defasados significativos para todos os poluentes. Por fim, o estudo apontou as crianças de 6 a 8 anos como grupo mais sensível aos efeitos da poluição. Os achados da tese sugerem que a poluição atmosférica decorrente da queima de biomassa está associada a redução do PFE de crianças e adolescentes com idades entre 6 e 15 anos, residentes na Amazônia Brasileira.
Resumo:
The motivation for this paper is to present procedures for automatically creating idealised finite element models from the 3D CAD solid geometry of a component. The procedures produce an accurate and efficient analysis model with little effort on the part of the user. The technique is applicable to thin walled components with local complex features and automatically creates analysis models where 3D elements representing the complex regions in the component are embedded in an efficient shell mesh representing the mid-faces of the thin sheet regions. As the resulting models contain elements of more than one dimension, they are referred to as mixed dimensional models. Although these models are computationally more expensive than some of the idealisation techniques currently employed in industry, they do allow the structural behaviour of the model to be analysed more accurately, which is essential if appropriate design decisions are to be made. Also, using these procedures, analysis models can be created automatically whereas the current idealisation techniques are mostly manual, have long preparation times, and are based on engineering judgement. In the paper the idealisation approach is first applied to 2D models that are used to approximate axisymmetric components for analysis. For these models 2D elements representing the complex regions are embedded in a 1D mesh representing the midline of the cross section of the thin sheet regions. Also discussed is the coupling, which is necessary to link the elements of different dimensionality together. Analysis results from a 3D mixed dimensional model created using the techniques in this paper are compared to those from a stiffened shell model and a 3D solid model to demonstrate the improved accuracy of the new approach. At the end of the paper a quantitative analysis of the reduction in computational cost due to shell meshing thin sheet regions demonstrates that the reduction in degrees of freedom is proportional to the square of the aspect ratio of the region, and for long slender solids, the reduction can be proportional to the aspect ratio of the region if appropriate meshing algorithms are used.
Resumo:
Linear wave theory models are commonly applied to predict the performance of bottom-hinged oscillating wave surge converters (OWSC) in operational sea states. To account for non-linear effects, the additional input of coefficients not included in the model itself becomes necessary. In ocean engineering it is
common practice to obtain damping coefficients of floating structures from free decay tests. This paper presents results obtained from experimental tank tests and numerical computational fluid dynamics simulations of OWSC’s. Agreement between numerical and experimental methods is found to be very good, with CFD providing more data points at small amplitude rotations.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in time domain models, is not able to accurately model the occurring damping over the whole regime of rotation amplitudes. The authors
conclude that a hyperbolic function is most suitable to express the instantaneous damping ratio over the rotation amplitude and would be the best choice to be used in coefficient based time domain models.
Resumo:
Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.
Resumo:
Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.
Resumo:
Background Anxiety disorders are common, and cognitive–behavioural therapy (CBT) is a first-line treatment. Candidate gene studies have suggested a genetic basis to treatment response, but findings have been inconsistent. Aims To perform the first genome-wide association study (GWAS) of psychological treatment response in children with anxiety disorders (n = 980). Method Presence and severity of anxiety was assessed using semi-structured interview at baseline, on completion of treatment (post-treatment), and 3 to 12 months after treatment completion (follow-up). DNA was genotyped using the Illumina Human Core Exome-12v1.0 array. Linear mixed models were used to test associations between genetic variants and response (change in symptom severity) immediately post-treatment and at 6-month follow-up. Results No variants passed a genome-wide significance threshold (P = 5×10−8) in either analysis. Four variants met criteria for suggestive significance (P<5×10−6) in association with response post-treatment, and three variants in the 6-month follow-up analysis. Conclusions This is the first genome-wide therapygenetic study. It suggests no common variants of very high effect underlie response to CBT. Future investigations should maximise power to detect single-variant and polygenic effects by using larger, more homogeneous cohorts.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.