982 resultados para linear measures
Resumo:
The increasing stock of aging office buildings will see a significant growth in retrofitting projects in Australian capital cities. Stakeholders of refitting works will also need to take on the sustainability challenge and realize tangible outcomes through project delivery. Traditionally, decision making for aged buildings, when facing the alternatives, is typically economically driven and on ad hoc basis. This leads to the tendency to either delay refitting for as long as possible thus causing building conditions to deteriorate, or simply demolish and rebuild with unjust financial burden. The technologies involved are often limited to typical strip-clean and repartition with dry walls and office cubicles. Changing business operational patterns, the efficiency of office space, and the demand on improved workplace environment, will need more innovative and intelligent approaches to refurbishing office buildings. For example, such projects may need to respond to political, social, environmental and financial implications. There is a need for the total consideration of buildings structural assessment, modeling of operating and maintenance costs, new architectural and engineering designs that maximise the utility of the existing structure and resulting productivity improvement, specific construction management procedures including procurement methods, work flow and scheduling and occupational health and safety. Recycling potential and conformance to codes may be other major issues. This paper introduces examples of Australian research projects which provided a more holistic approach to the decision making of refurbishing office space, using appropriate building technologies and products, assessment of residual service life, floor space optimisation and project procurement in order to bring about sustainable outcomes. The paper also discusses a specific case study on critical factors that influence key building components for these projects and issues for integrated decision support when dealing with the refurbishment, and indeed the “re-life”, of office buildings.
Resumo:
The Cape York Welfare Reform (‘CYWR’) trial was due to expire at the end of 2011. In October 2011, the Queensland Government voted to extend the trial until the end of 2013. In November 2011, the Federal Minister for Indigenous Affairs announced changes to the Social Security (Administration) Act 1999 (Cth) that will extend another similar welfare reform, the School Enrolment and Attendance through Welfare Reform Measure (‘SEAM’), throughout other parts of Australia. This article examines the CYWR with reference to the Racial Discrimination Act 1975 (Cth) (‘RDA’), using the data available in the publications from the Family Responsibilities Commission (‘FRC’).It finds no clear evidence that the reforms have been effective in improving social conditions thus far and, as such, serious concerns as to whether the CYWR breaches the RDA.
Resumo:
Design for Manufacturing (DFM) is a highly integral methodology in product development, starting from the concept development phase, with the aim of improving manufacturing productivity and maintaining product quality. While Design for Assembly (DFA) is focusing on elimination or combination of parts with other components (Boothroyd, Dewhurst and Knight, 2002), which in most cases relates to performing a function and manufacture operation in a simpler way, DFM is following a more holistic approach. During DFM, the considerable background work required for the conceptual phase is compensated for by a shortening of later development phases. Current DFM projects normally apply an iterative step-by-step approach and eventually transfer to the developer team. Although DFM has been a well established methodology for about 30 years, a Fraunhofer IAO study from 2009 found that DFM was still one of the key challenges of the German Manufacturing Industry. A new, knowledge based approach to DFM, eliminating steps of DFM, was introduced in Paul and Al-Dirini (2009). The concept focuses on a concurrent engineering process between the manufacturing engineering and product development systems, while current product realization cycles depend on a rigorous back-and-forth examine-and-correct approach so as to ensure compatibility of any proposed design to the DFM rules and guidelines adopted by the company. The key to achieving reductions is to incorporate DFM considerations into the early stages of the design process. A case study for DFM application in an automotive powertrain engineering environment is presented. It is argued that a DFM database needs to be interfaced to the CAD/CAM software, which will restrict designers to the DFM criteria. Consequently, a notable reduction of development cycles can be achieved. The case study is following the hypothesis that current DFM methods do not improve product design in a manner claimed by the DFM method. The critical case was to identify DFA/DFM recommendations or program actions with repeated appearance in different sources. Repetitive DFM measures are identified, analyzed and it is shown how a modified DFM process can mitigate a non-fully integrated DFM approach.
Resumo:
Linear (or continuous) assets are engineering infrastructure that usually spans long distances and can be divided into different segments, all of which perform the same function but may be subject to different loads and environmental factors. Typical linear assets include railway lines, roads, pipelines and cables. How and when to renew such assets are critical decisions for asset owners as they normally involves significant capital investment. Through investigating the characteristics of linear asset renewal decisions and identifying the critical requirements that are associated with renewal decisions, we present a multi-criteria decision support method to help optimise renewal decisions. A case study that concerns renewal of an economiser's tubing system is a coal-fired power station is adopted to demonstrate the application of this method. Although the paper concerns a particular linear asset decision type, the approach has broad applicability for linear asset management.
Resumo:
PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.
Resumo:
Facial expression is one of the main issues of face recognition in uncontrolled environments. In this paper, we apply the probabilistic linear discriminant analysis (PLDA) method to recognize faces across expressions. Several PLDA approaches are tested and cross-evaluated on the Cohn-Kanade and JAFFE databases. With less samples per gallery subject, high recognition rates comparable to previous works have been achieved indicating the robustness of the approaches. Among the approaches, the mixture of PLDAs has demonstrated better performances. The experimental results also indicate that facial regions around the cheeks, eyes, and eyebrows are more discriminative than regions around the mouth, jaw, chin, and nose.
Resumo:
Road traffic noise affects the quality of life in the areas adjoining the road. The effect of traffic noise on people is wide ranging and may include sleep disturbance and negative impact on work efficiency. To address the problem of traffic noise, it is necessary to estimate the noise level. For this, a number of noise estimation models have been developed which can estimate noise at the receptor points, based on simple configuration of buildings. However, for a real world situation we have multiple buildings forming built-up area. In such a situation, it is almost impossible to consider multiple diffractions and reflections in sound propagation from the source to the receptor point. An engineering solution to such a real world problem is needed to estimate noise levels in built-up area.
Resumo:
Background: Catheter ablation for atrial fibrillation (AF) is more efficacious than antiarrhythmic therapy. Post ablation recurrences reduce ablation effectiveness and are contributed by lesion discontinuity in the fibrotic linear ablation lesions. The anti-fibrotic role of statins in reducing AF is being assessed in current trials. By reducing the chronic pathological fibrosis that occurs in AF they may reduce AF. However if statins also have an effect on the acute therapeutic fibrosis of an ablation, this could exacerbate lesion discontinuity and AF recurrence. We tested the hypothesis that statins attenuate ablation lesion continuity in a recognised pig atrial linear ablation model. Aims: To assess whether Atorvastatin diminishes the bi-directional conduction block produced by a linear atrial ablation lesion. Methods: Sixteen pigs were randomised to statin (n=8) or placebo (n=8) with drug pre-treatment for 3 days and a further 4 weeks. At initial electrophysiological study (EPS1) 3D right atrium (RA) mapping and a vertical ablation linear lesion in the posterior RA with bidirectional conduction block were completed (Gepstein Circ 1999). Follow-up electrophysiological assessment (EPS2) at 28 days assessed bidirectional conduction block maintenance. Results: Data of 15/16 (statin=7) pigs were analysed. Mean lesion length was 3.7 ± 0.8cm with a mean of 17.9 ± 5.7 lesion applications. Bi-directional conduction block was confirmed in 15/15 pigs (100%) at EPS1 and EPS2. Conclusions: Atorvastatin did not affect ablation lesion continuity in this pig atrial linear ablation model. If patients are on long-term statins for AF reduction, periablation cessation is probably not necessary.
Resumo:
The work presented in this poster outlines the steps taken to model a 4 mm conical collimator (BrainLab, Germany) on a Novalis Tx linear accelerator (Varian, Palo Alto, USA) capable of producing a 6MV photon beam for treatment of Stereotactic Radiosurgery (SRS) patients. The verification of this model was performed by measurements in liquid water and in virtual water. The measurements involved scanning depth dose and profiles in a water tank plus measurement of output factors in virtual water using Gafchromic® EBT3 film.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
ABSTRACT Objectives: To investigate the effect of hot and cold temperatures on ambulance attendances. Design: An ecological time series study. Setting and participants: The study was conducted in Brisbane, Australia. We collected information on 783 935 daily ambulance attendances, along with data of associated meteorological variables and air pollutants, for the period of 2000–2007. Outcome measures: The total number of ambulance attendances was examined, along with those related to cardiovascular, respiratory and other non-traumatic conditions. Generalised additive models were used to assess the relationship between daily mean temperature and the number of ambulance attendances. Results: There were statistically significant relationships between mean temperature and ambulance attendances for all categories. Acute heat effects were found with a 1.17% (95% CI: 0.86%, 1.48%) increase in total attendances for 1 °C increase above threshold (0–1 days lag). Cold effects were delayed and longer lasting with a 1.30% (0.87%, 1.73%) increase in total attendances for a 1 °C decrease below the threshold (2–15 days lag). Harvesting was observed following initial acute periods of heat effects, but not for cold effects. Conclusions: This study shows that both hot and cold temperatures led to increases in ambulance attendances for different medical conditions. Our findings support the notion that ambulance attendance records are a valid and timely source of data for use in the development of local weather/health early warning systems.
Resumo:
Objectives: To investigate the effect of hot and cold temperatures on ambulance attendances. Design: An ecological time series study. Setting and participants: The study was conducted in Brisbane, Australia. We collected information on 783 935 daily ambulance attendances, along with data of associated meteorological variables and air pollutants, for the period of 2000–2007. Outcome measures: The total number of ambulance attendances was examined, along with those related to cardiovascular, respiratory and other non-traumatic conditions. Generalised additive models were used to assess the relationship between daily mean temperature and the number of ambulance attendances. Results: There were statistically significant relationships between mean temperature and ambulance attendances for all categories. Acute heat effects were found with a 1.17% (95% CI: 0.86%, 1.48%) increase in total attendances for 1 °C increase above threshold (0–1 days lag). Cold effects were delayed and longer lasting with a 1.30% (0.87%, 1.73%) increase in total attendances for a 1 °C decrease below the threshold (2–15 days lag). Harvesting was observed following initial acute periods of heat effects, but not for cold effects. Conclusions: This study shows that both hot and cold temperatures led to increases in ambulance attendances for different medical conditions. Our findings support the notion that ambulance attendance records are a valid and timely source of data for use in the development of local weather/health early warning systems.
Resumo:
The main factors affecting environmental sensitivity to degradation are soil, vegetation, climate and management, through either their intrinsic characteristics or by their interaction on the landscape. Different levels of degradation risks may be observed in response to particular combinations of the aforementioned factors. For instance, the combination of inappropriate management practices and intrinsically weak soil conditions will result in a severe degradation of the environment, while the combination of the same type of management with better soil conditions may lead to negligible degradation.The aim of this study was to identify factors and their impact on land degradation processes in three areas of the Basilicata region (southern Italy) using a procedure that couples environmental indices, GIS and crop-soil simulation models. Areas prone to desertification were first identified using the Environmental Sensitive Areas (ESA) procedure. An analysis for identifying the weight that each of the contributing factor (climate, soil, vegetation, management) had on the ESA was carried out using GIS techniques. The SALUS model was successfully executed to identify the management practices that could lead to better soil conditions to enhance land use sustainability. The best management practices were found to be those that minimized soil disturbance and increased soil organic carbon. Two alternative scenarios with improved soil quality and subsequently improving soil water holding capacity were used as mitigation measures. The ESA were recalculated and the effects of the mitigation measures suggested by the model were assessed. The new ESA showed a significant reduction on land degradation.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.