935 resultados para learning object
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
En el presente trabajo se analiza la existencia y argumenta la importancia de las ventajas que aporta el E-Learning al proceso de Internacionalización en la Universidad del Rosario, además se indaga si dichas ventajas podrían facilitar la diferenciación estratégica de la misma. Inicia con una revisión teórica sobre los conceptos de educación virtual y aprendizaje, y su estado actual en Colombia, logrando la creación de un marco teórico. En una segunda etapa se identificarán las características que comparte la institución educativa con una organización y que la hacen objeto de estudio en el campo estratégico, específicamente en cuanto a la diferenciación. Posteriormente se describirán las etapas de implementación del E-Learning en la Universidad, analizando los aspectos más importantes de este proceso. Más adelante se hace una aproximación al concepto de internacionalización y la importancia que tiene en el mundo multicultural actual. Finalmente se relacionan las ventajas de la implementación del E-Learning con las brindadas en el proceso de internacionalización y se argumenta si estas facilitan la diferenciación estratégica del Rosario.
Resumo:
The object of this study is to identify the learning styles (LS) used by the students of the subject of physiology of the exercise of the program of Physiotherapy, with the purpose of establishing a direct relationship later on between the learning styles and the possible pedagogic strategies that but they favor the compression of the physiology of the exercise 48 subject of second and third year of career they were interviewed through the instrument standardized compound number (CHAEA). This study carried out an analysis descriptive and of typical deviation of the data. They were differences statistically significant in the styles of active and reflexive learning, in front of the Theoretical and pragmatic styles what puts in evidence the necessity to generate pedagogic strategies inside the subject that this chord with the tendency of the active and reflexive learning of the students.
Resumo:
Resumen tomado de la publicación
Resumo:
L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.
Resumo:
Perirhinal cortex in monkeys has been thought to be involved in visual associative learning. The authors examined rats' ability to make associations between visual stimuli in a visual secondary reinforcement task. Rats learned 2-choice visual discriminations for secondary visual reinforcement. They showed significant learning of discriminations before any primary reinforcement. Following bilateral perirhinal cortex lesions, rats continued to learn visual discriminations for visual secondary reinforcement at the same rate as before surgery. Thus, this study does not support a critical role of perirhinal cortex in learning for visual secondary reinforcement. Contrasting this result with other positive results, the authors suggest that the role of perirhinal cortex is in "within-object" associations and that it plays a much lesser role in stimulus-stimulus associations between objects.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.
Resumo:
We studied how the integration of seen and felt tactile stimulation modulates somatosensory processing, and investigated whether visuotactile integration depends on temporal contiguity of stimulation, and its coherence with a pre-existing body representation. During training, participants viewed a rubber hand or a rubber object that was tapped either synchronously with stimulation of their own hand, or in an uncorrelated fashion. In a subsequent test phase, somatosensory event-related potentials (ERPs) were recorded to tactile stimulation of the left or right hand, to assess how tactile processing was affected by previous visuotactile experience during training. An enhanced somatosensory N140 component was elicited after synchronous, compared with uncorrelated, visuotactile training, irrespective of whether participants viewed a rubber hand or rubber object. This early effect of visuotactile integration on somatosensory processing is interpreted as a candidate electrophysiological correlate of the rubber hand illusion that is determined by temporal contiguity, but not by pre-existing body representations. ERPmodulations were observed beyond 200msec post-stimulus, suggesting an attentional bias induced by visuotactile training. These late modulations were absent when the stimulation of a rubber hand and the participant’s own hand was uncorrelated during training, suggesting that pre-existing body representations may affect later stages of tactile processing.
Resumo:
Treating algebraic symbols as objects (eg. “‘a’ means ‘apple’”) is a means of introducing elementary simplification of algebra, but causes problems further on. This current school-based research included an examination of texts still in use in the mathematics department, and interviews with mathematics teachers, year 7 pupils and then year 10 pupils asking them how they would explain, “3a + 2a = 5a” to year 7 pupils. Results included the notion that the ‘algebra as object’ analogy can be found in textbooks in current usage, including those recently published. Teachers knew that they were not ‘supposed’ to use the analogy but not always clear why, nevertheless stating methods of teaching consistent with an‘algebra as object’ approach. Year 7 pupils did not explicitly refer to ‘algebra as object’, although some of their responses could be so interpreted. In the main, year 10 pupils used ‘algebra as object’ to explain simplification of algebra, with some complicated attempts to get round the limitations. Further research would look to establish whether the appearance of ‘algebra as object’ in pupils’ thinking between year 7 and 10 is consistent and, if so, where it arises. Implications also are for on-going teacher training with alternatives to introducing such simplification.
Resumo:
The ability to change an established stimulus–behavior association based on feedback is critical for adaptive social behaviors. This ability has been examined in reversal learning tasks, where participants first learn a stimulus–response association (e.g., select a particular object to get a reward) and then need to alter their response when reinforcement contingencies change. Although substantial evidence demonstrates that the OFC is a critical region for reversal learning, previous studies have not distinguished reversal learning for emotional associations from neutral associations. The current study examined whether OFC plays similar roles in emotional versus neutral reversal learning. The OFC showed greater activity during reversals of stimulus–outcome associations for negative outcomes than for neutral outcomes. Similar OFC activity was also observed during reversals involving positive outcomes. Furthermore, OFC activity is more inversely correlated with amygdala activity during negative reversals than during neutral reversals. Overall, our results indicate that the OFC is more activated by emotional than neutral reversal learning and that OFC's interactions with the amygdala are greater for negative than neutral reversal learning.
Resumo:
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.
Resumo:
This paper presents two tools developed to facilitate the use and automate the process of using Virtual Worlds for educational purposes. The first tool has been developed to automatically create the classroom space, usually called region in the virtual world, which means, a region in the virtual world used to develop educational activities between professors, students and interactive objects. The second tool helps the process of creating 3D interactive objects in a virtual world. With these tools educators will be able to produce 3D interactive learning objects and use them in virtual classrooms improving the quality and appeal, for students, of their classes. © 2011 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
The present work is aimed to the study and the analysis of the defects detected in the civil structure and that are object of civil litigation in order to create an instruments capable of helping the different actor involved in the building process. It is divided in three main sections. The first part is focused on the collection of the data related to the civil proceeding of the 2012 and the development of in depth analysis of the main aspects regarding the defects on existing buildings. The research center “Osservatorio Claudio Ceccoli” developed a system for the collection of the information coming from the civil proceedings of the Court of Bologna. Statistical analysis are been performed and the results are been shown and discussed in the first chapters.The second part analyzes the main issues emerged during the study of the real cases, related to the activities of the technical consultant. The idea is to create documents, called “focus”, addressed to clarify and codify specific problems in order to develop guidelines that help the technician editing of the technical advice.The third part is centered on the estimation of the methods used for the collection of data. The first results show that these are not efficient. The critical analysis of the database, the result and the experience and throughout, allowed the implementation of the collection system for the data.