993 resultados para laser interferometry
Resumo:
Although the first procedure in a seeing human eye using excimer laser was reported in 1988 (McDonald et al. 1989, O'Connor et al. 2006) just three studies (Kymionis et al. 2007, O'Connor et al. 2006, Rajan et al. 2004) with a follow-up over ten years had been published when this thesis was started. The present thesis aims to investigate 1) the long-term outcomes of excimer laser refractive surgery performed for myopia and/or astigmatism by photorefractive keratectomy (PRK) and laser-in situ- keratomileusis (LASIK), 2) the possible differences in postoperative outcomes and complications when moderate-to-high astigmatism is treated with PRK or LASIK, 3) the presence of irregular astigmatism that depend exclusively on the corneal epithelium, and 4) the role of corneal nerve recovery in corneal wound healing in PRK enhancement. Our results revealed that in long-term the number of eyes that achieved uncorrected visual acuity (UCVA)≤0.0 and ≤0.5 (logMAR) was higher after PRK than after LASIK. Postoperative stability was slightly better after PRK than after LASIK. In LASIK treated eyes the incidence of myopic regression was more pronounced when the intended correction was over >6.0 D and in patients aged <30 years.Yet the intended corrections in our study were higher for LASIK than for PRK eyes. No differences were found in percentages of eyes with best corrected visual acuity (BCVA) or loss of two or more lines of visual acuity between PRK and LASIK in the long-term. The postoperative long-term outcomes of PRK with two different delivery systems broad beam and scanning laser were compared and revealed no differences. Postoperative outcomes of moderate-to-high astigmatism yielded better results in terms of UCVA and less compromise or loss of two more lines of BCVA after LASIK that after PRK.Similar stability for both procedures was revealed. Vector analysis showed that LASIK outcomes tended to be more accurate than PRK outcomes, yet no statistically differences were found. Irregular astigmatism secondary to recurrent corneal erosion due to map-dot-fingerprint was successfully treated with phototherapeutic keratectomy (PTK). Preoperative videokeratographies (VK) showed irregular astigmatism. However, postoperatively, all eyes showed a regular pattern. No correlation was found between pre- and postoperative VK patterns. Postoperative outcomes of late PRK in eyes originally subjected to LASIK showed that all (7/7) eyes achieved UCVA ≤0.5 at last follow-up (range 3 — 11 months), and no eye lost lines of BCVA. Postoperatively all eyes developed and initial mild haze (0.5 — 1) into the first month. Yet, at last follow-up 5/7 eyes showed a haze of 0.5 and this was no longer evident in 2/7 eyes. Based on these results, we demonstrated that the long-term outcomes after PRK and LASIK were safe and efficient, with similar stability for both procedures. The PRK outcomes were similar when treated by broad-beam or scanning slit laser. LASIK was better than PRK to correct moderate-to-high astigmatism, yet both procedures showed a tendency of undercorrection. Irregular astigmatism was proven to be able to depend exclusively from the corneal epithelium. If this kind of astigmatism is present in the cornea and a customized PRK/LASIK correction is done based on wavefront measurements an irregular astigmatism may be produced rather than treated. Corneal sensory nerve recovery should have an important role in the modulation of the corneal wound healing and post-operative anterior stromal scarring. PRK enhancement may be an option in eyes with previous LASIK after a sufficient time interval that in at least 2 years.
Resumo:
The properties of thin films depend to a large extent upon their mechanical stability which in turn is dependent on the intrinsic stresses developed during evaporation. This paper describes a simple method for the measurement of stresses in thin films by the use of real-time holographic interferometry.
Resumo:
Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 degrees C. The thin films with (222) preferred orientation were found to grow at 650 degrees C with better crystallinity which was established by the lowest full-width half maxima of similar to 0.38. The dielectric response of the thin films grown at 650 degrees C have been characterized within a temperature range of 270-650 K and a frequency window of 0.1-100 kHz. The dielectric dispersion in the thin films shows a Maxwell-Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temperature, has been excluded. The ``attempt jump frequency'' obtained from temperature dependent tangent loss and real part of dielectric constants, has been found to lie in the range of their lattice vibronic frequencies (10(12)-10(13) Hz). The activation energy arising from a large polaronic hopping due to trapped charge at low frequency region has been calculated from the ac conduction behavior. The range of activation energies (0.26-0.59. eV) suggests that the polaronic hopping at low frequency is mostly due to oxygen vacancies. (C) 2010 American Institute of Physics. doi:10.106311.3457335]
Resumo:
A variety of applications exist for reverse saturable absorbers (RSAs) in the area of optical pulse processing and computing. An RSA can be used as power limiter/pulse smoother and energy limiter/pulse shortner of laser pulses. A combination of RSA and saturable absorber (SA) can be used for mode locking and pulse shaping between high power laser amplifiers in oscillator amplifier chain. Also, an RSA can be used for the construction of a molecular spatial light modulator (SLM) which acts as an input/output device in optical computers. A detailed review of the theoretical studies of these processes is presented. Current efforts to find RSAs at desired wavelength for testing these theoretical predictions are also discussed.
Resumo:
Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.
Resumo:
The application of holographic interferometry to the measurement of the corrosion rate of aluminium in sodium hydroxide is investigated. Details of the fabrication of the corrosion cell and the experimental procedure are given. Thickness loss of aluminium was found for different dissolution times and compared with the conventional weight-loss method using a microbalance.
Resumo:
A generalized two‐dimensional flow‐radiation coupled model to extract power from a gasdynamic laser is proposed. The model is used for the study of power extraction from a 9.4‐μm CO2 downstream‐mixing gasdynamic laser, where a cold CO2+H2 stream is mixed with a vibrationally excited N2 stream at the nozzle exits. This model is developed by coupling radiation with the two‐dimensional, unsteady, laminar and viscous flow modeling needed for such systems. The analysis showed that the steady‐state value of 9.4‐μm intensity as high as 5×107 W/m2 can be obtained from the system studied. The role of H2 relaxant in the power extraction process has also been investigated.