701 resultados para kraft pulping
Resumo:
The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.
Resumo:
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3 Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Resumo:
In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.
Resumo:
The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.
Resumo:
Pinus taeda wood chips were treated with the biopulping fungus Ceriporiopsis subvermispora in soybean-oil-amended cultures The secretion of oxalic acid and the accumulation of thiobarbituric acid reactive substances were significantly increased in soybean-oil-amended cultures By contrast the secretion of hydrolytic and oxidative enzymes was not altered in the cultures Biotreated wood samples were characterized for weight and component losses as well as by in-situ thioacidolysis Residual lignins were also extracted from biotreated wood using a mild-non-razing extraction procedure The lignins were characterized by (31)P nuclear magnetic resonance ((31)P-NMR) spectroscopy Soybean oil amendment in the cultures was found to affect lignin degradation routes however it inhibited depolymerization reactions detectable in the residual lignin that was retained in the biotreated wood As a consequence chemithermomechanical pulping of the biotreated samples was not improved by soybean oil amendment in the cultures Crown Copyright (C) 2010 Published by Elsevier Ltd All rights reserved
Resumo:
Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Biopulping of Eucalyptus grandis wood chips with Phanerochaete chrysosporium RP-78 was evaluated under non-aseptic conditions in laboratory and mill wood-yard. The ability of P. chrysosporium to compete with indigenous fungi present in fresh wood chips was notorious under controlled laboratory experiments. A subsequent step involved an industrial test performed with 10-ton of fresh wood chips inoculated and maintained at 37 +/- 38 degrees C for 39 days in a biopulping pilot plant. Biotreated wood chips were pulped in a chemithermomechanical pulping mill. Net energy consumption during refining was 745 kWh ton(-1) and 610 kWh ton(-1) of processed pulp for control and biotreated wood chips, respectively. Accordingly, 18.5% net energy saving could be achieved. Biopulps contained lower shive content and had improved strength properties compared to control pulps. Tensile index improved from 25 +/- 1 N m g(-1) to 33.6 +/- 0.5 N m g(-1) and delamination strength from 217 +/- 19 kPa to 295 +/- 30 kPa.
Resumo:
Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.
Resumo:
Effluents from pulp mill are usually toxic and mutagenic. This characteristic is mainly a consequence of xenobiotic compounds that are formed during the process. Global parameters such as chemical oxidation demand, total organic carbon and others, do not permit identify whether the toxic potential was remedied by the treatments or not. The objective of this research was to evaluate the performance of an horizontal-flow anaerobic immobilized biomass reactor (HAIB) treating the bleaching effluent from a Kraft pulp mill using toxicological (Daphnia similis - Ceriodaphnia sdvestrii) mutagenicity and citotoxicological assays (Allium cepa L). The results showed high sensibility of the test-organisms and capability of the anaerobic reactor to remove compounds that are exerting toxic and mutagenic effects. The bioassays represented an attractive alternative to water quality analyzes and the performance evaluation of treatments.
Resumo:
As part of an experimental project on the treatment of bleach plant effluents the results of biodegradability and toxicity assessment of effluents from a bench-scale horizontal anaerobic immobilized bioreactor (HAIB) are discussed in this paper. The biodegradability of the bleach plant effluents from a Kraft pulp mill treated in the HAIB was evaluated using the modified Zahn-Wellens test. The inoculum came from a pulp mill wastewater treatment plant and the dissolved organic carbon (DOC) was used as the indicator of organic matter removal. The acute and chronic toxicity removal during the anaerobic treatment was estimated using Daphnia similis and Ceriodaphnia silvestrii respectively. Moreover, the evaluation of chromosome aberrations (CA), micronucleus frequencies (MN) and mitotic index (IM) in Allium cepa cells were used as genotoxicity indicators. The results indicate that the effluents from the anaerobic reactor are amenable to aerobic polishing. Acute and chronic toxicity were reduced by 90 and 81%, respectively. The largest CA and MN incidence in the meristematic cells of A. cepa were observed after exposure to the raw bleach plant effluent. The HAIB was able to reduce the acute and chronic toxicity as well as chromosome aberrations and the occurrence of micronucleus.
Resumo:
Effluents originated in cellulose pulp manufacturing processes are usually toxic and recalcitrant, specially the bleaching effluents, which exhibit high contents of aromatic compounds (e.g. residual lignin derivates). Although biological processes are normally used, their efficiency for the removal of toxic lignin derivates is low. The toxicity and recalcitrance of a bleached Kraft pulp mill were assessed through bioassays and ultraviolet absorption measurements, i.e. acid soluble lignin (ASL), UV(280), and specific ultraviolet absorption (SUVA), before and after treatment by an integrated system comprised of an anaerobic packed-bed bioreactor and oxidation step with ozone. Furthermore, adsorbable organic halides (AOX) were measured. The results demonstrated not only that the toxic recalcitrant compounds can be removed successfully using integrated system, but also the ultraviolet absorption measurements can be an interesting control-parameter in a wastewater treatment.
Resumo:
In this paper, composites from polypropylene and Kraft pulp (from Pinus radiata) were prepared. Phenyl isocyanate, unblocked and phenol blocked derivatives of 4,4`-methylenebis (phenyl isocyanate) (MDI) were used as coupling agents and the mechanical properties of the obtained composites analyzed. The results showed that the addition of such compatibilizers readily improved the tensile and flexural strengths of the composites. However, no significant variation in the mechanical properties was observed for composite formulations comprising different isocyanate compounds. Accordingly, the chemical structure of isocyanate derivatives did not affect extensively the mechanical properties of MDI-coupled pine fiber reinforced composites. These results were similar to those obtained in previous studies regarding the efficiency of organosilane coupling agents. In comparison to monoreactive isocyanates, the addition of MIDI increased considerably the mechanical properties of pine fiber-polypropylene composites. The mechanical anchoring of polymeric PP chains onto the irregular reinforcement surface supported this result. Non-isothermal DSC analysis showed a slowing effect of MDI on the crystallization kinetics of the coupled composites. This may have been the result of diminished polymer chain mobility in the matrix due to mechanical anchoring onto the fiber surface. Considering these results, the occurrence of strong bonds between the composite components was stated, rather than the unique existence of Van der Waals interactions among the non-polar structures. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
Several studies using vegetable fibers as the exclusive reinforcement in fiber-cement composites have shown acceptable mechanical performance at the first ages. However, after the exposure to accelerated aging tests, these composites have shown significant reduction in the toughness or increase in embrittlement. This was mainly attributed to the improved fiber-matrix adhesion and fiber mineralization after aging process. The objective of the present research was to evaluate composites produced by the slurry dewatering technique followed by pressing and air curing, reinforced with combinations of polypropylene fibers and sisal kraft pulp at different pulp freeness. The physical properties, mechanical performance, and microstructural characteristics of the composites were evaluated before and after accelerated and natural aging. Results showed the great contribution of pulp refinement on the improvement of the mechanical strength in the composites. Higher intensities of refinement resulted in higher modulus of rupture for the composites with hybrid reinforcement after accelerated and natural aging. The more compact microstructure was due to the improved packing of the mineral particles with refined sisal pulp. The toughness of the composites after aging was maintained in relation to the composites at 28 days of cure.
Resumo:
Extracellular polysaccharides from three Erythroclonium spp. were shown, by a combination of compositional, linkage analyses, and Fourier transform infrared and C-13-nuclear magnetic resonance spectroscopy, to be highly substituted carrageenans with at least five types of repeating disaccharide units. These are the carrabiose 2,4'-disulfate of iota-carrageenan, carrabiose 2-sulfate of alpha-carrageenan, the 6'-O-methylated counterparts of each of these repeating units, and 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate. The polysaccharides also contain significant amounts of unsubstituted, 4-linked galactopyranose and small amounts of 4-linked 3-O-methylgalactopyranose and terminal glycosyl residues. The carrageenan preparations of the three species are similar, differing only in the proportions of some components. (C) 1998 Elsevier Science Ltd.