938 resultados para k-means clustering
Resumo:
Positron Emission Tomography (PET) using 18F-FDG is playing a vital role in the diagnosis and treatment planning of cancer. However, the most widely used radiotracer, 18F-FDG, is not specific for tumours and can also accumulate in inflammatory lesions as well as normal physiologically active tissues making diagnosis and treatment planning complicated for the physicians. Malignant, inflammatory and normal tissues are known to have different pathways for glucose metabolism which could possibly be evident from different characteristics of the time activity curves from a dynamic PET acquisition protocol. Therefore, we aimed to develop new image analysis methods, for PET scans of the head and neck region, which could differentiate between inflammation, tumour and normal tissues using this functional information within these radiotracer uptake areas. We developed different dynamic features from the time activity curves of voxels in these areas and compared them with the widely used static parameter, SUV, using Gaussian Mixture Model algorithm as well as K-means algorithm in order to assess their effectiveness in discriminating metabolically different areas. Moreover, we also correlated dynamic features with other clinical metrics obtained independently of PET imaging. The results show that some of the developed features can prove to be useful in differentiating tumour tissues from inflammatory regions and some dynamic features also provide positive correlations with clinical metrics. If these proposed methods are further explored then they can prove to be useful in reducing false positive tumour detections and developing real world applications for tumour diagnosis and contouring.
Resumo:
To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37) on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively). Three cells (4.5%) were bistratified, having thick dendrites, and the others (95.5%) were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40%) and 2 groups with inner (50-100%) stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.
Resumo:
The purpose of this study is to examine the psychographic (product attributes, motivation opinions, interest, lifestyle, values) characteristics of wine tourists along the Niagara wine r,~ute, located in Ontario, Canada, using a multiple case study method. Four wineries were selected, two wineries each on the East, and West sides of the wine route during the shoulder-season (January, February, 2004). Using a computer generated survey technique, tourists were approached to fill out a questionnaire on one of the available laptop computers, where a sample ofN=321 was obtained. The study findings revealed that there are three distinct wine tourist segments in the Niagara region. The segments were determined using an exploratory factor analysis (EFA) and a K-means cluster analysis: Wine Lovers, Wine Interested, and Wine Curious wine tourists. These three segments displayed significant differences in their, motivation for visiting a winery, lifestyles, values, and wine purchasing behaviour. This study also examined differences between winery locations, on the East and West sides of the Niagara wine route, with respect to the aforementioned variables. The results indicated that there were significant differences between the regions with respect to these variables. The findings suggest that these differences present opportunities for more effective marketing strategies based on the uniqueness of each region. The results of this study provide insight for academia into a method of psychographic market segmentation of wine tourists and consumer behaviour. This study also contributes to the literature on wine tourism, and the identification of psychographic characteristics of wine tourists, an area where little research has taken place.
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest
Resumo:
In a leading service economy like India, services lie at the very center of economic activity. Competitive organizations now look not only at the skills and knowledge, but also at the behavior required by an employee to be successful on the job. Emotionally competent employees can effectively deal with occupational stress and maintain psychological well-being. This study explores the scope of the first two formants and jitter to assess seven common emotional states present in the natural speech in English. The k-means method was used to classify emotional speech as neutral, happy, surprised, angry, disgusted and sad. The accuracy of classification obtained using raw jitter was more than 65 percent for happy and sad but less accurate for the others. The overall classification accuracy was 72% in the case of preprocessed jitter. The experimental study was done on 1664 English utterances of 6 females. This is a simple, interesting and more proactive method for employees from varied backgrounds to become aware of their own communication styles as well as that of their colleagues' and customers and is therefore socially beneficial. It is a cheap method also as it requires only a computer. Since knowledge of sophisticated software or signal processing is not necessary, it is easy to analyze
Resumo:
Identificar en dos muestras de población escolar urbana de Asturias, una perteneciente a colegios públicos, y otra perteneciente a colegios privados, si existen distintas tipologías de 'climas sociales en el aula', a partir de las percepciones de los alumnos, y si hay diferencias entre los centros públicos y los privados. 575 Sujetos, 200 alumnos de colegios públicos y 375 de colegios privados. Se trata de sujetos de ambos sexos, con edades entre 13 y 14 años, pertenecientes a un nivel de 8 de EGB de Avilés, Gijon y Oviedo. Variables independientes: implicación, afiliación, ayuda, tarea, competitividad, organización, claridad, control e innovación. Variables moduladoras: pertenencia por parte de los alumnos a colegios públicos o privados. Escala de clima social (ces), creada por r.H. Moos y cols.. Análisis de conglomerados cluster K-means, un tipo de análisis de cluster no jerárquico. Con este método se divide un conjunto de individuos en conglomerados, de tal forma que, al final del proceso, cada caso pertenece al cluster cuyo centro está más cercano a él. El centro del cluster viene dado por la media de los individuos que forman cada variable. Del análisis de variables que intervienen en la percepción del clima social escolar, se observan diferencias entre colegios públicos y privados, en lo que respecta a las variables de ayuda, tarea, organización e innovación. En relación a las otras cinco variables, afiliación, implicación, competitividad, claridad y control, las diferencias entre una muestra y otra son inexistentes. A la hora de estudiar cada uno de los cluster, se tiene en cuenta la reestructuración realizada tanto en la muestra de colegios públicos como privados. En la muestra de colegios privados destacan tres tipologías de climas: un clima afectivo percibido por un 50 por ciento de la población; un clima conservador y autoritario percibido por casi un 40 por ciento de los estudiantes; un clima estructurado percibido por un 10 por ciento aproximadamente. En la muestra de alumnos pertenecientes a colegios públicos, se encuentran cuatro tipos de climas: un clima afectivo percibido por un 32 por ciento de la población; un clima afectivo y no participativo, detectado por un 27 por ciento de los estudiantes; un clima autoritario percibido por un 26,5 por ciento de la muestra; un clima centrado en la organización y el esfuerzo, percibido por un 14,5 por ciento de la población. El hecho de que los estudiantes de colegios públicos o privados, perciban un determinado tipo de clima, está muy relacionado con la figura del profesor-tutor. El funcionamiento de la clase depende de las características de éste, que aunque revelen los canones de la institución, tienen una huella personal. Para evaluar la percepción del clima escolar, a las variables analizadas, habría que añadir la personalidad del profesor, lo que no descartan realizar en una posterior investigación.
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the Rodrigues Triple Junction in the Indian Ocean were studied applying classical statistical methods (fuzzy c-means clustering, linear mixing model, principal component analysis) for the extraction of endmembers and evaluating the spatial and temporal variation of geochemical signals. Three main factors of sedimentation were expected by the marine geologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. The display of fuzzy membership values and/or factor scores versus depth provided consistent results for two factors only; the ultra-basic component could not be identified. The reason for this may be that only traditional statistical methods were applied, i.e. the untransformed components were used and the cosine-theta coefficient as similarity measure. During the last decade considerable progress in compositional data analysis was made and many case studies were published using new tools for exploratory analysis of these data. Therefore it makes sense to check if the application of suitable data transformations, reduction of the D-part simplex to two or three factors and visual interpretation of the factor scores would lead to a revision of earlier results and to answers to open questions . In this paper we follow the lines of a paper of R. Tolosana- Delgado et al. (2005) starting with a problem-oriented interpretation of the biplot scattergram, extracting compositional factors, ilr-transformation of the components and visualization of the factor scores in a spatial context: The compositional factors will be plotted versus depth (time) of the core samples in order to facilitate the identification of the expected sources of the sedimentary process. Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Analisa-se se os funcionamentos inferenciais têm uma estrutura própria dos sistemas dinâmicos não lineais, estudados a partir de quatro gráficas humorísticas. Os primeiros resultados com o tratamento estadístico lineal de K-medias projetam a presencia de perfis de diferentes funcionamentos inferenciais em função das diferentes piadas. Os resultados com a técnica da wavelet, proveniente dos sistemas dinâmicos não lineais, mostram patrões dos funcionamentos inferenciais que dão conta de sua natureza multifractal, sem uma sequencialidade fixa e sem uma organização aparente. Isto implica que é necessário revisar a concepção de estádios sequenciais fixos como os que dominam os estudos de desenvolvimento cognitivo.
Resumo:
Integrar diferentes unidades de análisis para el estudio de la personalidad y considerar estas unidades en su predicción de la satisfacción y el rendimiento en adolescentes. 296 estudiantes de ESO de entre 15 y 18 años. 162 son mujeres y 134 varones. Las aplicaciones de las pruebas se realizan en horario de tutorías dentro del Plan Acción Tutorial (PAT). Se les explica a los alumnos que participan en la investigación sobre 'metas que se proponen realizar en un futuro' y que las pruebas que se administran les pueden ayudar en el futuro para la toma de decisiones. Las aplicaciones de las pruebas se realizan en dos sesiones de evaluación. En la primera, se aplican las pruebas de personalidad y satisfacción. En la segunda se evalúan metas personales. El rendimiento académico se operativiza por la puntuación del adolescente en su curso académico. Todos los alumnos participan voluntariamente en la investigación. Escala de objetivos o metas personales, escala de satisfacción por áreas vitales (ESAV), Inventario de personalidad para adolescentes de Millón (MAPI), estilos básicos de personalidad, escalas de correlatos comportamentales. Para el análisis de los datos, se utilizan programas estadísticos SPSS, SPAD, LISREL VIII y para el cálculo del tamaño del efecto el Statistical Power Computer Analysis. Las técnicas de análisis de datos se centran en Análisis de Correspondencia Múltiple (ACM), análisis de conglomerados K means, Análisis de varianza y diferencias entre coeficientes de correlación. Los resultados indican que los adolescentes que se plantean metas relacionadas con las tareas vitales a desarrollar en un futuro próximo manifiestan mayores niveles de satisfacción. Además, las diferencias en los estilos de personalidad, permiten entender el sistema de metas personales en cuatro grupos de adolescentes. La consideración de los estilos de personalidad y las metas personales permiten entender la adaptación de los adolescentes a su entorno considerando la satisfacción autopercibida y el rendimiento académico.
Resumo:
Resumen tomado de la publicación. Con el apoyo económico del departamento MIDE de la UNED. Incluye anexo con el cuestionario utilizado para la realización del estudio