913 resultados para ion-exchange chromatography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polygalacturonases are enzymes involved in the degradation of pectic substances, being extensively used in food industries, textile processing, degumming of plant rough fibres, and treatment of pectic wastewaters. Polygalacturonase (PG) production by thermophilic fungus Thermoascus aurantiacus on solid-state fermentation was carried out in culture media containing sugar cane bagasse and orange bagasse in proportions of 30% and 70% (w/w) at 45°C for 4 days. PG obtained was purified by gel filtration and ion-exchange chromatography. The highest activity was found between pH 4.5 and 5.5, and the enzyme preserved more than 80% of its activity at pH values between 5.0 and 6.5. At pH values between 3.0 and 4.5, PG retained about 73% of the original activity, whereas at pH 10.0 it remained around 44%. The optimum temperature was 60–65°C. The enzyme was completely stable when incubated for 1 hour at 50°C. At 55°C and 60°C, the activity decreased 55% and 90%, respectively. The apparent molecular weight was 29.3 kDa, Km of 1.58 mg/mL and Vmax of 1553.1μmol/min/mg. The presence of Zn+2, Mn+2, and Hg+2 inhibited 59%, 77%, and 100% of enzyme activity, respectively. The hydrolysis product suggests that polygalacturonase was shown to be an endo/exoenzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. 1. Total hemolysates of Synbranchus marmoratus Bloch, 1795, captured in Vitoriana, district of Botucatu, State of São Paulo, Brazil, were submitted to agar-starch gel electrophoresis on glass slides using 42 mM-Tris 1.7 mM EDTA-6.1 mM borate buffer, pH 8.8, for the gel and 10 mM borate-1.7 mM NaOH buffer, pH 8.6, for the cuvette. 2. 2. Three distinct hemoglobin bands were detected, with Hb I being of the cathodic type. 3. 3. Cellulose acetate electrophoresis in 800 mM Tris-2.1 mM EDTA buffer, pH 8.9, containing 6 M urea and 2.25 mM β-mercaptoethanol indicated the presence of four globin chains denoted α 1, α 2, β and γ. 4. 4. It is suggested that the probable tetrameric constitution of the hemoglobin of Synbranchus marmoratus Bloch, 1795 is Hb I (α 2 2γ 2), Hb II (α 2 1γ 2) and Hb III (α 2 1β 2). © 1986.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEV-GEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the E beta-chain, and shows no effects on the gamma-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and beta-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 degrees C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 degrees C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 mu M); CAL2 (17 kDa, pHo 5.5, km 11 mu M Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM L-Leucine-p-nitroanilide), alpha-glucosidase (90 kDa, pHo 5.0, km 5 mM with p-nitrophenyl alpha-D-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular beta-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. beta-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 A degrees C and 3.0-5.5, respectively. beta-xylosidase was stable in acidic pH (3.0-6.0) and 70 A degrees C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %) and MgCl2 (20 %) salts. The beta-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-beta-d-xylopyranoside, exhibiting apparent K-m and V-max values of 0.66 mM and 39 U (mg protein)(-1) respectively, and to a lesser extent p-nitrophenyl-beta-d-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel beta-d-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by beta-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Betanin is a natural pigment with antioxidant properties used as a food colourant. This work describes the spectrophotometric and chromatographic quantification of betanin (2S/15S) and its epimer isobetanin (2S/15R) in fresh beetroot juice, food-grade beetroot powder and betanin standard diluted in dextrin. Absorption spectra of all three samples were deconvoluted using a mixed three-function model. Food-grade beetroot powder has the largest amount of violet-red impurities, probably formed during processing. The purification of betanin from these complex matrices was carried out by seven different methods. Ion exchange chromatography was the most efficient method for the purification of betanin from all samples; however, fractions contain high amounts of salt. Reversed-phase HPLC as well as reversed-phase column chromatography also produced good results at a much faster rate. The longer retention time of isobetanin when compared to betanin in reversed-phase conditions has been investigated by means of quantum-mechanical methods. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ihrer dualen Funktion als Monophenolhydroxylase (EC 1.14.18.1) und Diphenoloxidase (EC 1.10.3.1) ist die Tyrosinase das Schlüsselenzym der Melanogenese, der Synthese des Melanins, und übernimmt damit quer durch alle Organismenreiche Aufgaben von der Pigmentierung bis hin zu einer Beteiligung an der Immunantwort. Sie zählt, zusammen mit den Catecholoxidasen und Hämocyaninen, zu den Typ-3-Kupfer-Proteinen, die sich durch ein Aktives Zentrum auszeichnen, das in der Lage ist, Sauerstoff und phenolische Substrate reversibel zwischen zwei Kupfer-Ionen zu binden. Bisher konnte weder die Funktion der pflanzlichen Tyrosinase genau identifiziert, noch die Struktur eines solchen Enzyms aufgeklärt werden. Mit dem späteren Ziel, durch eine röntgenkristallographische Analyse die zugrunde liegende strukturelle Ursache der zusätzlichen Monophenolhydroxylase-Aktivität von Tyrosinasen gegenüber reinen Catecholoxidasen ermitteln zu können, wurde in dieser Arbeit ein bakterielles Expressionssystem entwickelt, das zur Herstellung einer rekombinanten Tyrosinase oder Polyphenoloxidase (PPO) aus Spinacia oleracea (Spinat) für die Kristallisation verwendet werden kann. Das rekombinante Protein wurde in Form von Inclusion Bodies isoliert, anhand einer Affinitätschromatographie aufgereinigt und in anschließende Rückfaltungsexperimente eingesetzt. In einer parallelen Versuchsreihe konnte Spinat, aufgrund seiner hohen Tyrosinaseaktivität, als geeignetes Objekt für die Isolation des nativen Enzyms identifiziert werden. Im Anschluss an eine Thylakoidpräparation, Solubilisierung der Thylakoidmembranen und Fällung des Proteins mit Ammoniumsulfat, wurden Experimente zur weiteren Anreicherung der Tyrosinase-Aktivität über eine Anionenaustausch-Chromatographie und zur Etablierung einiger nachfolgender Aufreinigungsschritte durchgeführt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die effiziente Generierung von Peptid-Epitopen aus zelleigenen oder viralen Proteinen für die Präsentation auf „Major Histocompatibility Complex I“ (MHC I) Molekülen ist essentiell für die Aktivierung des adaptiven Immunsystems und die Effektorfunktion der CD8+ zytotoxischen T-Zellen (CTLs). CTLs erkennen diese Peptide in Kontext mit MHC I Molekülen über ihren spezifischen T-Zellrezeptor (TCR). Die Generierung dieser Epitope ist das Resultat eines komplexen proteolytischen Prozesses, der im Zytosol und im endoplasmatischen Retikulum (ER) stattfindet. Im Zytosol generiert das Proteasom N-terminal verlängerte Epitop-Vorläufer. Diese werden durch weitere zytosolische Proteasen abgebaut, es sei denn, sie werden durch den „transporter associated with antigen processing“ (TAP) in das ER transportiert. Dort werden sie durch Aminopeptidasen getrimmt, um den Bindungsvoraussetzungen der MHC I Moleküle zu genügen. Im murinen System ist die „ER aminopeptidase associated with antigen processing“ (ERAAP) die bislang einzige beschriebene Aminopeptidase, die dieses N-terminale Trimming von CTL Epitopen vermitteln kann. Das Profil der proteolytischen Aktivität in angereichertem murinen ER kann jedoch nicht allein durch die Aktivität von ERAAP erklärt werden, was auf die Anwesenheit weiterer Aminopeptidasen mit einer potentiellen Funktion in der Antigenprozessierung hinweist. In dieser Arbeit konnte die immunologisch bislang noch nicht beschriebene Aminopeptidase ERMP1 (endoplasmic reticulum metallopeptidase 1) im murinen ER identifiziert werden. Nach Aufreinigung muriner Mikrosomen und anschließender Anionenaustausch-Chromatographie wurden die gesammelten Fraktionen mit fluorogenen Substraten auf Aminopeptidase-Aktivität getestet. Durch massenspektrometrische Analyse konnten in den beobachteten Peaks die schon beschriebenen Aminopeptidasen ERAAP, die „insulin regulated aminopeptidase“ IRAP und die immunologisch bislang nicht beschriebene Aminopeptidase ERMP1 identifiziert werden. Durch Fluoreszenzmikroskopie konnte die intrazelluläre Lokalisation von ERMP1 im ER durch Kolokalisation mit TAP verifiziert werden. Wie viele Komponenten des MHC I Prozessierungsweges wird auch die Expression von ERMP1 durch IFN-γ stimuliert. Dies macht ERMP1 zu einer potentiellen zweiten trimmenden Aminopeptidase im murinen ER. Überexpression von ERMP1 hat einen allelspezifischen Einfluss auf die globale MHC I Präsentation auf der Zelloberfläche und durch Überexpression und shRNA vermitteltes gene silencing konnte außerdem ein epitopspezifischer Effekt nachgewiesen werden. Da N-terminales Trimming durch ERAAP mit der Evasion von Tumoren und veränderter Immundominanz assoziiert wird, ist die detaillierte Charakterisierung der Aminopeptidase ERMP1 ein wichtiger Schritt zum Verständnis der MHC I Antigen-Prozessierung und der Generierung von CTL Epitopen im ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TM0727 gene of Thermotoga maritima is responsible for encoding what has been reported to be a modulator of DNA gyrase (pmbA). Although the function of pmbA is still unknown, it is believedto be involved in cell division, carbon storage regulation, and the synthesis of the antibiotic peptide microcin B17. It is suggested that it serves together with tldD, a known zinc dependent protease, tomodulate DNA gyrase. TM0727 is believed to be a zinc dependent protease that binds zinc in the central active site of the molecule, located between two equivalent monomeric units. However, thecrystal structure determined by Wilson et al. (2005) did not contain zinc. It therefore remains to be seen if TM0727 requires zinc for activity, or regulation, and if the protein is indeed a protease. To begin studying this protein, the gene was expressed in BL21(DE3) pLysS cells and the induction time was optimized. Using affinity and ion exchange chromatography, the protein has been successfully purified. The purification procedure can be replicated to obtain sufficient protein for characterization. Purification results show that the protein loses stability after 24 hours and remains stable under an imidazole-free lysis workup. Preliminary characterization of TM0727 has focused on understanding the protein’s structuralproperties through tryptophan fluorescence anisotropy measurements. The four tryptophan residues located within the TM0727 dimer fluoresce at different maximum wavelengths and with differentintensities upon excitation with 295nm light. These emission properties are highly sensitive to the environment (solvent, surrounding residues) of each tryptophan residue. The low number oftryptophans allows for a specific monitoring of the protein’s structure as it denatures. As more denaturant is added to the protein, its tryptophan environments have clearly altered. This is indicative of unfolding and increased solvent exposure of the protein. This unfolding has been confirmed with the addition of a fluorescent quencher. Additionally, fluorescence anisotropy measurements have been carried out on the protein to gain a preliminary understanding of the rotational dynamics of the tryptophan residues. These experiments excite the tryptophan residues within the sample using a polarized light source. Polarized emission is then detected, the degree of which depends on the rotational dynamics and local environment of the tryptophan residues. The protein was denatured and the changes in emission were recorded to detect these structural changes. Results have shown a large change in quaternary structure, consistent with a dimer to monomer transition, occurs at 1.5M Guandidine HCl. There has also been an examination of the crystal structure for the location of a potential active site. The inner cavity of the protein was inspected visually to locate a potential location for a catalytic triad, specifically the amino acids found in the active sites of serine, cyteine, and aspartateproteases. It was found that a potential aspartic protease active site may be located between the Asparate286 and Aspartate287 residues. Further investigation is warranted to test this remotepossibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new snake protein, named bilinexin, has been purified from Agkistrodon bilineatus venom by ion-exchange chromatography and gel filtration chromatography. Under non-reducing conditions it has a mass of 110 kDa protein on SDS-PAGE. On reduction, it can be separated into five subunits with masses in the range 13-25 kDa. The N-terminal sequences of these subunits are very similar to those of convulxin or the alboaggregins, identifying bilinexin as a new member of the snake C-type lectin family, unusual in having multiple subunits. Bilinexin agglutinates fixed platelets. washed platelets and platelet rich plasma (PRP) without obvious activation (shape change) as confirmed by light microscope examination. Both inhibitory and binding studies indicate that antibodies against alpha2beta1 inhibit not only platelet agglutination induced by bilinexin, but also bilinexin binding to platelets. VM16d, a monoclonal anti-GPIbalpha antibody, completely inhibits platelet agglutination induced by bilinexin, and polyclonal antibodies against GPIbalpha prevent its binding to platelets. However, neither convulxin, polyclonal anti-GPVI antibodies, nor GPIIb/IIIa inhibitors affect its binding to and agglutination of platelets. Bilinexin neither activates GPIIb/IIIa integrin on platelets nor induces tyrosine phosphorylation of platelet proteins, nor increases intracellular Ca2+ in platelets. Like alboaggregin B, bilinexin agglutinates platelets, which makes it a good tool to investigate the differences in mechanism between snake C-type lectins causing platelet agglutination and those that induce full activation.