872 resultados para inequitable exchange
Resumo:
This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.
Resumo:
The solvothermal reaction of CoCl(2)4H(2)O and 4,4-sulfonyldibenzoic acid (H(2)SDBA) resulted in the formation of a three-dimensional coordination polymer Co-3(C14H8O6S)(3)(DMA)(2)(MeOH)].DMA (Ia) consisting of trinuclear Co-3 oxo-cluster units. The Co-3 trimeric units are connected by SDBA(2-) anions leading to a three dimensional structure with a pcu topology. The terminal methanol molecules could be exchanged in a single crystal to single crystal (SCSC) fashion by other similar solvent molecules (ethanol, acetonitrile, water, ethyleneglycol). Magnetic studies on the parent compound, Ia, indicate antiferromagnetic interactions between the central metal atoms.
Resumo:
Recently, it was found that the ferromagnetic SrRuO3 when combined with another ferromagnet in thin film form gives rise to exchange bias (EB) effect. However, we observed EB in single, strained, SrRuO3 thin films grown on diamagnetic LaAlO3 (100) substrates. It displays the training effect, which essentially confirms EB. The temperature dependence of the EB reveals the blocking temperature to be around similar to 75 K. The strength of the exchange bias decreases with the increase in thickness of the film. We observe tensile strain in the out of plane direction. Further, the presence of in-plane compressive strain is observed through asymmetric reciprocal space mapping. Finally, we find a direct link between strain and EB. The evolution of strain with thickness matches well with the nature of scaled EB. It has been shown earlier by first principle calculations that this strain can induce EB in thin films. (C) 2014 AIP Publishing LLC.
Resumo:
Nanocomposites of hard (SrFe12O19) and soft ferrite (CoFe2O4) are prepared by mixing individual ferrite components at appropriate weight ratio and subsequent heat treatment. The magnetization of the composites showed hysteresis loop that is characteristic of the exchange spring system. The variation of J(r)/J(r)(infinity) vs. J(d)/J(r)(infinity) for these nanocomposites are investigated to understand the presence of both the interacting field and the disorder in the system. This is further corroborated with the First Order Reversal Curve analysis (FORC) on the nanocomposites of 1:4 (Cobalt Ferrite: Strontium Ferrite) and 1:16 (Cobalt Ferrite: Strontium Ferrite). The FORC distribution reveals that the pinning mechanism is stronger in the nanocomposite of 1:4 compared to 1:16. However, the nanocomposite of 1:16 exhibit superior exchange coupling strength in contrast to 1:4. The asymmetric nature of the FORC distribution at H-c = 0 Oe for both the nanocomposites validates the intercoupling between the reversible and irreversible magnetization. (C) 2015 Author(s).
Resumo:
Two new Cu(I) compounds, namely Cu-2(bds)(bpy)(2)]center dot 2H(2)O (1) and Cu-4(bds)(2)(azpy)(4)]center dot 6H(2)O (3) (where bds = benzene-1,3-disulfonate, bpy = 4,4'-bipyridine and azpy = 4,4'-azopyridine), and four Ag(I) compounds, namely Ag-2(bds)(bpy)(2)]center dot 2H(2)O (2), Ag-2(bds)(azpy)(2)]center dot 4H(2)O (4), Ag(bds)(1/2)(bpe)]center dot 3H(2)O (5), and Ag-4(bds)(2)(tmdp)(4)]center dot 9H(2)O (6) (where bpe = 1,2-di(4-pyridyl) ethylene and tmdp = 4,4'trimethylenedipyridine), have been synthesized, and their structures were determined and characterized by elemental analysis, IR, UV-vis and thermal studies. The structure of the compounds changed from 1D (1 and 2) to 2D (3-5) and interpenetrated 3D (6). In the case of 5, a solid-state 2 + 2] photochemical cycloaddition reaction has been performed. Compound 2 exhibits a reversible anion exchange for perchlorate and permanganate, whereas the other compounds (1, 3-6) exhibit an irreversible anion exchange behaviour for perchlorate. Catalytic studies on 2 indicate Lewis acidity.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.
Resumo:
Rates of hydrogen/deuterium (H/D) exchange determined by H-1 NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of H-1 NMR resonances to the first order decay function permitted the determination of HID exchange rate constants (k) and their precise half-lives (t(1/2)) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the HID exchange rate. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We observe exchange bias (EB) in a single magnetic film Fe3O4 at temperature T < 200 K. Irrespective of crystallographic orientations of grown Fe3O4; they exhibit similar nature of EB for (100) epitaxial, (111) oriented and polycrystalline Fe3O4 thin films. Growth induced defects such as anti-phase boundaries (APBs) in epitaxial Fe3O4 thin film is known to have an influence on the magnetic interaction. But, it is noticed that according to the common consensus of APBs alone cannot explain the origin of EB. If majority of APBs end up with mainly anti-ferromagnetic interactions across these boundaries together with the internal ordering modification in Fe3O4, then EB can emerge at low temperatures. Hence, we propose the idea of directional anti-ferromagnetic APB induced EB in Fe3O4 triggered by internal ordering for T <= 200 K. Similar arguments are extended to (111) oriented as well as polycrystalline Fe3O4 films where the grain boundaries can impart same consequence as that of APBs. (C) 2015 Author(s).
Resumo:
Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).
Resumo:
Ground state magnetic properties of the spin-dependent Falicov-Kimball model (FKM) are studied by incorporating the intrasite exchange correlation J (between itinerant d- and localized f-electrons) and intersite (superexchange) correlation J (between localized f-electrons) on a triangular lattice for two different fillings. Numerical diagonalization and Monte-Carlo techniques are used to determine the ground state magnetic properties. Transitions from antiferromagnetic to ferromagnetic and again to re-entrant antiferromagnetic phase is observed in a wide range of parameter space. The magnetic moments of d- and f-electrons are observed to depend strongly on the value off, J and also on the total number of d-electrons (N-d). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the processes involved in the nucleation of colloidal lead selenide nanoparticles. Our studies show that an unusual pathway - an anion exchange reaction, causes the nucleation of lead selenide nanocrystals. In this process, one quantum dot is transformed into another due to a substitution of its constituent anions. The existence of this pathway was never anticipated perhaps due to its unusually rapid kinetics. The nucleation and growth kinetics of colloidal lead selenide quantum dots are found to fit well to a two-step process. The rate constant associated with the anion exchange process is found to be four orders of magnitude greater than that of the nanocrystal growth. The complete consumption of the initial oxide nanoparticle thus provides a sharp, temporally well-defined nucleation event.
Resumo:
A simple and feasible model feet the calculation of the gas transfer by bubble clouds is proposed in this article. N-2, O-2, and CO2 transferred by bubble clouds are obtained. At wind speed of 10 m/s, the calculated supersaturation of dissolved oxygen is 1.93-3.89% in agreement with the measurement.
Resumo:
A new two-sided model rather than the one-sided model in previous works is put forward. The linear instability analysis is performed on the Marangoni-Benard convection in the two-layer system with an evaporation interface. We define a new evaporation Biot number which is different from that in the one-sided model, and obtain the curves of critical Marangoni number versus wavenumber. The influence of evaporation velocity and Biot number on the system is discussed and a new phenomenon uninterpreted before is now explained from our numerical results.