959 resultados para iear-1 reactor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D (1) = D (2) = 0.27-0.95 h(-1)), constant recycle ratio (alpha = F (R) /F = 4.0) and a sugar concentration in the feed stream (S (0)) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resistive-type superconducting fault current limiters (RSFCL) prototypes using YBCO-coated conductors have shown current limitation for medium voltage class applications for acting time up to 80 ms. By connecting an air-core reactor in parallel with the RSFCL, thus making an hybrid current limiter, one can extend the acting time for up to 1 s. In this work, we report the performance of a hybrid current limiter subjected to an AC peak fault current of 2 kA during 1 s for which within the first 80 ms the SFCL limits the current concurrently with the air-core reactor, and for the remaining 920 ms, only the air-core reactor limits the current. In order to evaluate the actual conditions for subsequent reconnection of RSFCL to the power grid, the hybrid fault current limiter was tested varying the time interval for recovery from 900 ms and 1.2 s, followed again by the concurrent operation of the hybrid limiter during 1 s (SFCL during 80 ms). From this evaluation test, the recovery time can be measured and compared using the voltage peak generated in superconducting module from the first and second fault test. The recovery time was also determined through the pulsed current method (PCM) on short-length sample test. The results showed that the fault current was limited from 1.9 kA down to 514 A after 1 cycle of 60 Hz frequency, with recovery time lower than 1.2 s for two subsequent fault current tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L(-1), followed by chlorine doses of 10, 20 and 30 mg.L(-1), respectively. After the sequential ozone/chlorine process, the mean reduction in chemical oxygen demand ranged from 9 to 37%. Total coliform inactivation ranged from 1.59 to 3.73 log10, and E. coli was always <1 CFU 100 mL(-1). Ozonation resulted in the formation of aldehydes, which were not significantly impacted by the subsequent chlorine dose (P ≤ 0.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antibiotics sulfamethoxazole (SMTX) and ciprofloxacin (CIP) are commonly used in human and veterinary medicine, which explains their occurrence in wastewater. Anaerobic reactors are low-cost, simple and suitable technology to wastewater treatment, but there is a lack of studies related to the removal efficiency of antibiotics. To overcome this knowledge gap, the objective of this study was to evaluate the removal kinetics of SMTX and CIP using a horizontal-flow anaerobic immobilized biomass reactor. Two different concentrations were evaluated, for SMTX 20 and 40 μg L(-1); for CIP 2.0 and 5.0 μg L(-1). The affluent and effluent analysis was carried out in liquid chromatography/tandem mass spectrometry (LC-MS/MS) with the sample preparation procedure using an off-line solid-phase extraction. This method was developed, validated and successfully applied for monitoring the affluent and effluent samples. The removal efficiency found for both antibiotics at the two concentrations studied was 97%. Chemical oxygen demand (COD) exhibited kinetic constants that were different from that observed for the antibiotics, indicating the absence of co-metabolism. Also, though the antibiotic concentration was increased, there was no inhibitory effect in the removal of COD and antibiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper has the objective of monitoring the biological activity of composting process of sewage sludge, sugarcane bagasse and ground coffee in a hermetic rotary reactor using the respirometric method in laboratory scale, in order to obtain parameters and system design for large scale projects. Another particularity of this study is the use of a hermetic reactor with gas purging cycles. Purging was performed when the percentage of oxygen reached less than 5%, thus eliminating the gaseous mixture (with elevated CO2 ratio) and the introduction of environmental air with around 21% of O2, successively until the compost was stabilized. The average purge intervals obtained were 29 h and 2 min with reactor rotation frequency of 15 min. The time of the compost stabilization was optimized in 60% if compared to the 90 days in the traditional method. The results obtained can be used to design the process in industrial scale using a simple O2 gas analyzer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of similar to 100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR-laboratory scale- 14L) containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2.L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2.L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I) in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 x 10(-4) mol L-1 to 1.1 x 10(-3) mol L-1 with a detection limit of 8.0 x 10(-5) mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 x 10(-4) mol L-1 captopril (n = 12) were obtained. The sample throughput was 40 h(-1) and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical and physical properties of a Brazilian heavy oil submitted to plasma treatment were investigated by H-1 low-and high-field nuclear magnetic resonance (NMR) combined to the characterization of rheological properties, thermogravimetry and measurement of basic sediments and water (BSW) content. The crude oil was treated in a dielectric barrier discharge plasma reactor, using natural gas, CO2 or H-2 as working gas. The results indicated a large drop in the water content of the plasma-treated samples as compared to the crude oil, giving rise to a reduction in the viscosity. No significant chemical change was produced in the oil portion itself, as observed by H-1 NMR. The water contents determined by H-1 low-field NMR analyses agreed well with those obtained by BSW, indicating the low-field NMR methods as a useful tool for following the effects of plasma treatments on heavy oils, allowing the separation of the effects caused on the water and oil fractions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on results obtained from experiments carried out in an acidogenic anaerobic reactor aiming at the optimization of hydrogen production by altering the degree of back-mixing. It was hypothesized that there is an optimum operating point that maximizes the hydrogen yield. Experiments were performed in a packed-bed bioreactor by covering a broad range of recycle ratios (R) and the optimum point was obtained for an R value of 0.6. In this operating condition the reactor behaved as 8 continuous stirred-tank reactors in series and the maximum yield was 4.22 mol H-2 mol sucrose(-1). Such optimum point was estimated by deriving a polynomial function fitted to experimental data and it was obtained as the conjugation of three factors related to the various degrees of back-mixing applied to the reactor: mass transfer from the bulk liquid to the biocatalyst, liquid-to-gas mass transfer and the kinetic behavior of irreversible reactions in series. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new biomaterial, based on silica organofunctionalized with p-phenylenediamine (p-PDA) and the enzyme peroxidase, was used in the development of an enzymatic solid-phase reactor. The analytical techniques used in the characterization showed that the organic ligand was incorporated into the silica matrix. Thus, the silica modified with p-PDA allowed the incorporation of peroxidase by the electrostatic interaction between the carboxylic groups present in the enzyme molecules and the amino groups attached to the silica. The enzymatic solid-phase reactor was used for chemical oxidation of phenols in 1, 4-benzoquinone that was then detected by chronoamperometry. The system allowed the analysis of hydroquinone with a detection limit of 83.6 nmol L-1. Thus, the new material has potential in the determination of phenolic compounds river water samples.