907 resultados para household energy consumption


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents examination of ways to increase power generation in pulp mills. The main purpose was to identify and verify the best ways of power generation growth. The literature part of this study presented operation of energy pulp mill departments, energy consumption and generation by the recovery and power boilers. The second chapter of this part described the main directions for increase of electricity generation rise of black liquor dry solid content, increase of main steam parameters, flue gas heat recovery technologies, feed water and combustion air preheating. The third chapter of the literature part presented possible technical, environment and corrosion risks appeared from described alternatives. In the experimental part of this study, calculations and results of possible models with alternatives was presented. The possible combinations of alternatives were generated in 44 `models of energy pulp mill. The target of this part was define extra electricity generation after alternatives using and estimate profitability of generated models. The calculations were made by computer programme PROSIM. In the conclusions, the results were estimated on the basis of extra electricity generation and equipment design data of models. The profitability of cases was verified by their payback periods and additional incomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the factors that have influenced the energy intensity of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of the factors behind the energy intensity change of road freight and also to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tässä työssä arvioidaan kotitalouksien energiansäästöpotentiaalia valaistuksen osalta Suomessa. Euroopan Unioni on ratifioinut päästövähennystavoitteen 20 % koskien kaikkia primäärienergiantuotantomuotoja. Päästövähennystavoite on tarkoitus toteuttaa vuoteen 2020 mennessä. Tässä kandidaatintyössä arvioidaan saavutettavissa olevaa energiansäästöpotentiaalia Suomessa kotitalouksissa laitesähkön osalta. Energiansäästöpotentiaalin arviointi perustuu hehkulampun korvaamismahdollisuuksien vertailuun. Valaistuksessa voidaan saavuttaa jopa 75 % sähkönsäästö, kun korvataan yksi 60 W hehkulamppu vastaavan valomäärän tuottavalla energiansäästölampulla. Kokonaisuudessa kotitalouksien valaistuksessa on tehostamispotentiaalia noin 60 %. Valaistuksen tehostamisella saavutetaan noin 1,5 TWh säästö Suomen kokonaissähkökulutuksessa. Saavutettavat säästöt voivat olla jopa suuremmatkin, jos käytetään lisäksi älykästä valonohjausta. Johtopäätöksenä voidaan todeta, että tehostamispotentiaalia on merkittävästi ja tehostaminen on yksittäiselle kotitaloudelle taloudellisesti kannattavaa. Energiansäästöpotentiaalin toteuttamisen vaikutuksia kansantalouteen ei ole arvioitu.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this master’s thesis was to develop a method to be used in the selection of an optimal energy system for buildings and districts. The term optimal energy system was defined as the energy system which best fulfils the requirements of the stakeholder on whose preferences the energy systems are evaluated. The most influential stakeholder in the process of selecting an energy system was considered to be the district developer. The selection method consisted of several steps: Definition of the district, calculating the energy consumption of the district and buildings within the district, defining suitable energy system alternatives for the district, definition of the comparing criteria, calculating the parameters of the comparing criteria for each energy system alternative and finally using a multi-criteria decision method to rank the alternatives. For the purposes of the selection method, the factors affecting the energy consumption of buildings and districts and technologies enabling the use of renewable energy were reviewed. The key element of the selection method was a multi-criteria decision making method, PROMETHEE II. In order to compare the energy system alternatives with the developed method, the comparing criteria were defined in the study. The criteria included costs, environmental impacts and technological and technical characteristics of the energy systems. Each criterion was given an importance, based on a questionnaire which was sent for the steering groups of two district development projects. The selection method was applied in two case study analyses. The results indicate that the selection method provides a viable and easy way to provide the decision makers alternatives and recommendations regarding the selection of an energy system. Since the comparison is carried out by changing the alternatives into numeric form, the presented selection method was found to exclude any unjustified preferences over certain energy systems alternatives which would affect the selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Approximately a quarter of electrical power consumption in pulp and paper industry is used in different pumping systems. Therefore, improving pumping system efficiency is a considerable way to reduce energy consumption in different processes. Pumping of wood pulp in different consistencies is common in pulp and paper industry. Earlier, centrifugal pumps were used to pump pulp only at low consistencies, but development of MC technology has made it possible to pump medium consistency pulp. Pulp is a non-Newtonian fluid, which flow characteristics are significantly different than what of water. In this thesis is examined the energy efficiency of pumping medium consistency pulp with centrifugal pump. The factors effecting the pumping of MC pulp are presented and through case study is examined the energy efficiency of pumping in practice. With data obtained from the case study are evaluated the effects of pump rotational speed and pulp consistency on energy efficiency. Additionally, losses caused by control valve and validity of affinity laws in pulp pumping are evaluated. The results of this study can be used for demonstrating the energy consumption of MC pumping processes and finding ways to improve energy efficiency in these processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years the environmental issues and the energy saving have become increasingly import in modern society where industry is the major emission factor and energy consumer. Generally, most of the total energy consumption is caused by electrical drives used in industrial applications and thus improving the performance of electrical drives give an opportunity to improve the energy efficiency. In this Master Thesis improving the energy efficiency in different electrical drives is clarified with different cases: regenerative braking in the electric grid or recovery of the braking energy into an energy storage. In addition, as an example, the energy consumption of an elevator is analyzed by measurements. From these measurement results it can be estimated how much the share of the standby energy consumption is from the total energy consumption and how much regenerative energy is available. The latter part of the thesis concentrates on determination of the properties of lithium iron phosphate battery with measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy consumption in the world has been growing every year. The industrial sector represents 27.32% of the world energy demand. Heating systems that use solar energy may contribute with a percentage of the total energy required by industries. This work aimed to study the use of vacuum solar collectors for water pre-heating in boilers. We used four collectors installed according to NBR 15,569; water flow through the tubes was 0.058 L/s, and temperature in the inlet and outlet pipes was measured. Results showed that instantaneous radiation, and inlet fluid and room temperatures are variables that influence the process, reaching water maximum temperature in the solar collector outlet of 97.9 °C, and efficiency of approximately 65% for most experiments. For the financial viability evaluation, the payback study was applied, which resulted in 4; 7 and 5 years, for the respective sources: firewood, LPG (liquefied petroleum gas), and electricity. Regarding the calculation of the annual contribution to the reduction of greenhouse gases, it was, respectively, 2.162 and 356 kg of CO2 per m² of collector tubes, in comparison with firewood and LPG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Besides the sustaining of healthy and comfortable indoor climate, the air conditioning system should also achieve for energy efficiency. The target indoor climate can be ob-tained with different systems; this study focuses on comparing the energy efficiency of different air conditioning room unit systems in different climates. The calculations are made with dynamic energy simulation software IDA ICE by comparing the indoor cli-mate and energy consumption of an office building with different systems in different climates. The aim of the study is to compare the energy efficiency of chilled beam systems to other common systems: variable air volume, fan coil and radiant ceiling systems. Besides the annual energy consumption also the sustainability of target indoor climate is compared between the simulations. Another aim is to provide conclusions to be used in the product development of the chilled beam systems’ energy efficiency. The adaptable chilled beam system and the radiant ceiling system prove to be energy efficient independent of the climate. The challenge of reliable comparison is that other systems are not able to reach the target indoor climate as well as the others. The complex calculation environment of the simulation software, made assumptions and excluding of the financial aspects complicate comparing the big picture. The results show that the development of the chilled beam systems should concentrate on energy efficient night heating, flexible demand based ventilation and capacity control and possibilities on integrating the best practices with other systems. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The power demand of many mobile working machines such as mine loaders, straddle carriers and harvesters varies significantly during operation, and typically, the average power demand of a working machine is considerably lower than the demand for maximum power. Consequently, for most of the time, the diesel engine of a working machine operates at a poor efficiency far from its optimum efficiency range. However, the energy efficiency of dieseldriven working machines can be improved by electric hybridization. This way, the diesel engine can be dimensioned to operate within its optimum efficiency range, and the electric drive with its energy storages responds to changes in machine loading. A hybrid working machine can be implemented in many ways either as a parallel hybrid, a series hybrid or a combination of these two. The energy efficiency of hybrid working machines can be further enhanced by energy recovery and reuse. This doctoral thesis introduces the component models required in the simulation model of a working machine. Component efficiency maps are applied to the modelling; the efficiency maps for electrical machines are determined analytically in the whole torque–rotational speed plane based on the electricalmachine parameters. Furthermore, the thesis provides simulation models for parallel, series and parallel-series hybrid working machines. With these simulation models, the energy consumption of the working machine can be analysed. In addition, the hybridization process is introduced and described. The thesis provides a case example of the hybridization and dimensioning process of a working machine, starting from the work cycle of the machine. The selection and dimensioning of the hybrid system have a significant impact on the energy consumption of a hybrid working machine. The thesis compares the energy consumption of a working machine implemented by three different hybrid systems (parallel, series and parallel-series) and with different component dimensions. The payback time of a hybrid working machine and the energy storage lifetime are also estimated in the study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena oli yhtenäistää Etelä-Karjalan alueen erilaisia tapoja toimia alueke-räyksen suhteen. Aluekeräyksellä tarkoitetaan jätteiden keräystä pisteiltä, joihin kotitaloudet, jotka eivät kuulu kiinteistökohtaiseen keräykseen, voivat tuoda syntypaikkalajitellun kuiva- eli sekajätteensä. Tavoitteena oli myös saada tietoa siitä, minkälaiset ovat eri kuivajätehuoltovaihtoehtojen ilmastonmuutos- ja kustannusvaikutukset. Lisäksi tavoitteena oli selvittää, miten ympäristönäkökohdat voidaan ottaa huomioon kuljetuskilpailutuksissa. Tutkimuksessa kerättiin tietoa internetistä, opinnäytetöistä ja tieteellisistä artikkeleista sekä yritysten edustajilta. Kasvihuonekaasupäästöjen laskennassa hyödynnettiin GaBi 6.0 -elinkaariarviointiohjelmaa. Tutkimuksen perusteella aluekeräyspisteet kannattaa sijoittaa reiteille, joita asukkaat käyttävät vähintään kerran viikossa ja mitkä ovat optimaalisesti myös kuljetusurakoitsijan kannalta. Taajama-alueelle ei nähty suositeltavaksi sijoittaa aluekeräyspisteitä. Suositeltavina astioina aluekeräyspisteille nähtiin syväkeräyssäiliöt, joiden tyhjennys onnistuu samalla keräyskalustolla kuin kiinteistöjen jäteastioiden, kun ajoneuvo on varustettu puominosturilla. Suositeltavaksi nähtiin myös harventaa jäteastioiden talvityhjennystiheyksiä, jos tyhjennystiheys on vakio ympäri vuoden, sillä pääosa aluekeräyspisteiden käyttäjistä on loma-asukkaita. Tyhjennystiheyksien harvennuksella olisi mahdollista saavuttaa kustannussäästöjä. Tutkimuksessa laskettiin kuivajätteen elinkaarenaikaisia kasvihuonekaasupäästöjä kuivajätteen keräyksestä loppusijoitukseen ja energiahyötykäyttöön. Energiahyötykäyttökohteiksi valittiin Riihimäen, Kotkan sekä Leppävirran (suunnitteilla) jätteenpolttolaitokset. Tulosten pohjalta kuivajätteen energiahyötykäyttö oli loppusijoitusta selkeästi parempi vaihtoehto. Kuivajätteen keräys- ja kuljetuspäästöjen vaikutus oli pieni. Kuivajätteen kuljetusmatkan pituus jätteenpolttolaitokselle ei ole siis ratkaisevassa roolissa kokonaiskasvihuonekaasupäästöjä tarkasteltaessa. Etäisyyttä suurempi vaikutus onkin kuivajätteen koostumuksella, polttolaitosten vuosihyötysuhteilla ja korvattavilla polttoaineilla. Jatkossa suositellaan selvittämään vielä vaihtoehtoisia käsittelytapoja kuivajätteen sisältämälle sekamuovijakeelle, jonka poltosta aiheutuu merkittävä osuus (noin 74 %) kuivajätteen polton kasvihuonekaasupäästöistä. Ajankohtaisia kuljetuskilpailutuksia varten tarkasteltiin vielä tarkemmin keräys- ja kuljetuspäästöjä. Tulosten pohjalta havaittiin, että keräys- ja kuljetuspäästöjä on mahdollista vähentää reilusti (46–74 %) siirtymällä dieselistä biopolttoaineiden käyttöön. Tuloksiin vaikuttaa kuitenkin merkittävästi, minkälaisista raaka-aineista biopolttoaineet on valmistettu. Kuivajätteen keräyspäästöjä on mahdollista pienentää myös päivittämällä aluekeräyspisteverkostoa. Tutkimuksessa tarkasteltiin kustannuksia aluekeräyspisteiden astioiden uusinnasta tai korjauksesta kuivajätteen loppusijoitukseen tai energiahyötykäyttöön asti. Merkittävimmät kustannukset aiheutuivat kuivajätteen loppusijoituksesta, energiahyötykäytöstä sekä keräyksestä. Kustannusten näkökulmasta keräyksen rooli oli siis suurempi. Työn lopussa annettiin vielä vinkkejä, joiden avulla jätehuoltoyritykset voivat tehdä jätekuljetushankintoja ympäristönäkökohdat huomioiden. Usein selkein tapa huomioida ympäristönäkökohdat kuljetuskilpailutuksissa on asettaa riittävän tiukkoja pakollisia vaatimuksia, jolloin voi valita hinnaltaan halvimman vaihtoehdon. Kuljetuspalvelun hankinnassa tulee huomioida ainakin energiankulutus, hiilidioksidi-, typenoksidi-, hiilivety- ja hiukkaspäästöt. Lainsäädäntö ei määrää vähimmäistasoja, vaan hankintaa tehdessä kannattaa kartoittaa markkinatilanne, jotta vaatimukset osaa asettaa oikealle tasolle. Markkinoille kannattaa myös tiedottaa tulevaisuuden tarpeista ja suunnitelmista. Suuria hankintakokonaisuuksia suositellaan pilkottavan pienempiin osiin, jotta pienet ja keskisuuret yritykset pystyvät myös osallistumaan tarjouskilpailuihin. Kannustus innovaatioiden huomioimiseen hankinnoissa on lisääntynyt myös jätehuollon alalla. Selvitettyjen kasvihuonekaasupäästöjen perusteella oli merkille pantavaa, miten suuri vaikutus polttolaitoksen valinnalla oli kasvihuonekaasupäästöihin. Oleellista onkin huomioida ympäristönäkökohdat myös energiahyötykäyttökohdetta valittaessa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distillation is a unit operation of process industry, which is used to separate a liquid mixture into two or more products and to concentrate liquid mixtures. A drawback of the distillation is its high energy consumption. An increase in energy and raw material prices has led to seeking ways to improve the energy efficiency of distillation. In this Master's Thesis, these ways are studied in connection with the concentration of hydrogen peroxide at the Solvay Voikkaa Plant. The aim of this thesis is to improve the energy efficiency of the concentration of the Voikkaa Plant. The work includes a review of hydrogen peroxide and its manufacturing. In addition, the fundamentals of distillation and its energy efficiency are reviewed. An energy analysis of the concentration unit of Solvay Voikkaa Plant is presented in the process development study part. It consists of the current and past information of energy and utility consumptions, balances, and costs. After that, the potential ways to improve the energy efficiency of the distillation unit at the factory are considered and their feasibility is evaluated technically and economically. Finally, proposals to improve the energy efficiency are suggested. Advanced process control, heat integration and energy efficient equipment are the most potential ways to carry out the energy efficient improvements of the concentration at the Solvay Voikkaa factory. Optimization of the reflux flow and the temperatures of the overhead condensers can offer immediate savings in the energy and utility costs without investments. Replacing the steam ejector system with a vacuum pump would result in savings of tens of thousands of euros per year. The heat pump solutions, such as utilizing a mechanical vapor recompression or thermal vapor recompression, are not feasible due to the high investment costs and long pay back times.