905 resultados para histone deacetylase 9 gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides; we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the middle of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction. Following this route, the all-L cyclic tetrapeptide cyclo-[Tyr-Arg-Phe-Ala] was successfully prepared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective destruction of malignant tumor cells without damaging normal cells is an important goal for cancer chemotherapy in the 21st century. Differentiating agents that transform cancer cells to either a nonproliferating or normal phenotype could potentially be tissue-specific and avoid side effects of current drugs. However, most compounds that are presently known to differentiate cancer cells are histone deacetylase inhibitors that are of low potency or suffer from low bioavailability, rapid metabolism, reversible differentiation, and nonselectivity for cancer cells over normal cells. Here we describe 36 nonpeptidic compounds derived from a simple cysteine scaffold, fused at the C-terminus to benzylamine, at the N-terminus to a small library of carboxylic acids, and at the S-terminus to 4-butanoyl hydroxamate. Six compounds were cytotoxic at nanomolar concentrations against a particularly aggressive human melanoma cell line (MM96L), four compounds showed selectivities of greater than or equal to5:1 for human melanoma over normal human cells (NFF), and four of the most potent compounds were further tested and found to be cytotoxic for six other human cancer cell lines (melanomas SK-MEL-28, DO4; prostate DU145; breast MCF-7; ovarian JAM, CI80-13S). The most active compounds typically caused hyperacetylation of histones, induced p21 expression, and reverted phenotype of surviving tumor cells to a normal morphology. Only one compound was given orally at 5 mg/kg to healthy rats to look for bioavailaiblity, and it showed reasonably high levels in plasma (C-max 6 mug/mL, T-max 15 min) for at least 4 h. Results are sufficiently promising to support further work on refining this and related classes of compounds to an orally active, more tumor-selective, antitumor drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review we provide a brief background on the cell cycle and then focus on two novel and emerging areas of cell cycle research that may prove to have significant relevance to the development of novel anticancer agents. In particular, we review the emerging evidence to suggest that histone deacetylase inhibitors may possess cancer cell-specific cytotoxicity due to their ability to target a novel G2/M checkpoint. We also review the recent literature supporting the proposition that inhibition of E2F activity in epithelial cancer cells may prove to be a useful differentiation therapy that operates via cell cycle-dependent and cell cycle-independent mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis in human cells by reversibly affecting the phosphorylation of a variety of proteins. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by reversible demethylation and active site binding. Thus far, it is known that overexpression of PME-1 in human gliomas contributes to ERK pathway signaling, cell proliferation, and malignant progression. Whether PME-1-mediated PP2A inhibition promotes therapy resistance in gliomas is unknown. Specific PP2A targets regulated by PME-1 in cancers also remain elusive. Additionally, whether oncogenic function of PME-1 can be generalized to various human cancers needs to be investigated. This study demonstrated that PME-1 expression promotes kinase inhibitor resistance in glioblastoma (GBM). PME-1 silencing sensitized GBM cells to a group of clinically used indolocarbazole multikinase inhibitors (MKIs). To facilitate the quantitative evaluation of MKIs by cancer-cell specific colony formation assay, Image-J software-plugin ‘ColonyArea’ was developed. PME-1-silencing was found to reactivate specific PP2A complexes and affect PP2A-target histone deacetylase HDAC4 activity. The HDAC4 inhibition induced synthetic lethality with MKIs similar to PME-1 depletion. However, synthetic lethality by both approaches required co-expression of a pro-apoptotic protein BAD. In gliomas, PME-1 and HDAC4 expression was associated with malignant progression. Using tumor PME-1, HDAC4 and BAD expression based stratification signatures this study defined patient subgroups that are likely to respond to MKI alone or in combination with HDAC4 inhibitor therapies. In contrast to the oncogenic role of PME-1 in certain cancer types, this study established that colorectal cancer (CRC) patients with high tumor PME-1 expression display favorable prognosis. Interestingly, PME-1 regulated survival signaling did not operate in CRC cells. Summarily, this study potentiates the candidacy of PME-1 as a therapy target in gliomas, but argues against generalization of these findings to other cancers, especially CRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To design and develop a new series of histone deacetylase inhibitors (FP1 - FP12) and evaluate their inhibitory activity against hydroxyacetamide (HDAC) enzyme mixture-derived HeLa cervical carcinoma cell and MCF-7. Methods: The designed molecules (FP1 - FP12) were docked using AUTODOCK 1.4.6. FP3 and FP8 showed higher interaction comparable to the prototypical HDACI. The designed series of 2-[[(3- Phenyl/substituted Phenyl-[4-{(4-(substituted phenyl)ethylidine-2-Phenyl-1,3-Imidazol-5-One}](-4H- 1,2,4-triazol-5-yl)sulfanyl]-N-hydroxyacetamide derivatives (FP1-FP12) was synthesized by merging 2- [(4-amino-3-phenyl-4H- 1, 2, 4-triazol-5-yl) sulfanyl]-N-hydroxyacetamide and 2-{[4-amino-3-(2- hydroxyphenyl)-4H-1,2, 4-triazol-5-yl]sulfanyl}-N hydroxyacetamide derivatives with aromatic substituted oxazolone. The biological activity of the synthesized molecule (FP1-FP12) was evaluated against HDAC enzyme mixture-derived HeLa cervical carcinoma cell and breast cancer cell line (MCF-7). Results: HDAC inhibitory activity of FP10 showed higher IC50 (half-maximal concentration inhibitory activity) of 0.09 μM, whereas standard SAHA molecule showed IC50 of 0.057 μM. On the other hand, FP9 exhibited higher GI50 (50 % of maximal concentration that inhibited cell proliferation) of 22.8 μM against MCF-7 cell line, compared with the standard, adriamycin, with GI50 of (-) 50.2 μM. Conclusion: Synthesis, spectral characterization, and evaluation of HDAC inhibition activity and in vitro anticancer evaluation of novel hydroxyacetamide derivatives against MCF-7 cell line have been achieved. The findings indicate the emergence of potentialanticancer compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’acétylation est une modification post-traductionnelle des protéines essentielles. Elle est impliquée dans bon nombre de processus cellulaires importants comme la régulation de la structure de la chromatine et le recrutement de protéines. Deux groupes d’enzymes, soient les lysines acétyltransférases et les lysines désacétylases, régulent cette modification, autant sur les histones que sur les autres protéines. Au cours des dernières années, de petites molécules inhibitrices des désacétylases ont été découvertes. Certaines d’entre elles semblent prometteuses contre diverses maladies telles le cancer. L’acide valproïque, un inhibiteur de deux des trois classes des désacétylases, a un effet antiprolifératif chez plusieurs organismes modèles. Toutefois, les mécanismes cellulaires sous-jacents à cet effet restent encore méconnus. Ce mémoire met en lumière l’effet pH dépendant de l’acide valproïque sur différentes voies cellulaires importantes chez la levure Saccharomyces cerevisiae. Il démontre que ce composé a la capacité d’inhiber la transition entre les phases G1 et S par son action sur l’expression des cyclines de la phase G1. De plus, il inhibe l’activation de la kinase principale de la voie activée suite à un stress à la paroi cellulaire. L’acide valproïque occasionne également un arrêt dans la réplication de l’ADN sans y causer de dommage. Il s’agit là d’un effet unique qui, à notre connaissance, n’est pas observable avec d’autres agents qui inhibent la progression en phase S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’acétylation est une modification post-traductionnelle des protéines essentielles. Elle est impliquée dans bon nombre de processus cellulaires importants comme la régulation de la structure de la chromatine et le recrutement de protéines. Deux groupes d’enzymes, soient les lysines acétyltransférases et les lysines désacétylases, régulent cette modification, autant sur les histones que sur les autres protéines. Au cours des dernières années, de petites molécules inhibitrices des désacétylases ont été découvertes. Certaines d’entre elles semblent prometteuses contre diverses maladies telles le cancer. L’acide valproïque, un inhibiteur de deux des trois classes des désacétylases, a un effet antiprolifératif chez plusieurs organismes modèles. Toutefois, les mécanismes cellulaires sous-jacents à cet effet restent encore méconnus. Ce mémoire met en lumière l’effet pH dépendant de l’acide valproïque sur différentes voies cellulaires importantes chez la levure Saccharomyces cerevisiae. Il démontre que ce composé a la capacité d’inhiber la transition entre les phases G1 et S par son action sur l’expression des cyclines de la phase G1. De plus, il inhibe l’activation de la kinase principale de la voie activée suite à un stress à la paroi cellulaire. L’acide valproïque occasionne également un arrêt dans la réplication de l’ADN sans y causer de dommage. Il s’agit là d’un effet unique qui, à notre connaissance, n’est pas observable avec d’autres agents qui inhibent la progression en phase S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a common, progressive neurodegenerative disease characterised by degeneration of nigrostriatal dopaminergic neurons, aggregation of α-synuclein and motor symptoms. Current dopamine-replacement strategies provide symptomatic relief, however their effectiveness wear off over time and their prolonged use leads to disabling side-effects in PD patients. There is therefore a critical need to develop new drugs and drug targets to protect dopaminergic neurons and their axons from degeneration in PD. Over recent years, there has been robust evidence generated showing that epigenetic dysregulation occurs in PD patients, and that epigenetic modulation is a promising therapeutic approach for PD. This article first discusses the present evidence implicating global, and dopaminergic neuron-specific, alterations in the methylome in PD, and the therapeutic potential of pharmacologically targeting the methylome. It then focuses on another mechanism of epigenetic regulation, histone acetylation, and describes how the histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that mediate this process are attractive therapeutic targets for PD. It discusses the use of activators and/or inhibitors of HDACs and HATs in models of PD, and how these approaches for the selective modulation of histone acetylation elicit neuroprotective effects. Finally, it outlines the potential of employing small molecule epigenetic modulators as neuroprotective therapies for PD, and the future research that will be required to determine and realise this therapeutic potential.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

L'arthrose (OA) est une maladie articulaire dégénérative, classée comme la forme la plus fréquente au monde. Elle est caractérisée par la dégénérescence du cartilage articulaire, l’inflammation de la membrane synoviale, et le remodelage de l’os sous-chondral. Ces changements structurels et fonctionnels sont dues à de nombreux facteurs. Les cytokines, les prostaglandines (PG), et les espèces réactives de l'oxygène sont les principaux médiateurs impliqués dans la pathophysiologie de l'OA. L'interleukine-1β (IL-1β) est une cytokine pro-inflammatoire majeure qui joue un rôle crucial dans l'OA. L'IL-1β induit l'expression de la cyclooxygénase-2 (COX-2), la microsomale prostaglandine E synthase-1 (mPGES-1), la synthase inductible de l'oxyde nitrique (iNOS), ainsi que leurs produits la prostaglandine E2 (PGE2) et l'oxyde nitrique (NO). Ce sont des médiateurs essentiels de la réponse inflammatoire au cours de l'OA qui contribuent aux mécanismes des douleurs, de gonflement, et de destruction des tissus articulaires. Les modifications épigénétiques jouent un rôle très important dans la régulation de l’expression de ces gènes pro-inflammatoires. Parmi ces modifications, la méthylation/ déméthylation des histones joue un rôle critique dans la régulation des gènes. La méthylation/ déméthylation des histones est médiée par deux types d'enzymes: les histones méthyltransférases (HMT) et les histones déméthylases (HDM) qui favorisent l’activation et/ou la répression de la transcription. Il est donc nécessaire de comprendre les mécanismes moléculaires qui contrôlent l’expression des gènes de la COX-2, la mPGES-1, et l’iNOS. L'objectif de cette étude est de déterminer si la méthylation/déméthylation des histones contribute à la régulation de l’expression des gènes COX-2, mPGES-1, et iNOS dans des chondrocytes OA humains induits par l'IL-1β. Nous avons montré que la méthylation de la lysine K4 de l'histone H3 (H3K4) par SET-1A contribue à l’activation des gènes COX-2 et iNOS dans les chondrocytes humains OA induite par l'IL-1β. Nous avons également montré que la lysine K9 de l’histone H3 (H3K9) est déméthylée par LSD1, et que cette déméthylation contribue à l’expression de la mPGES-1 induite par IL-1β dans les chondrocytes humains OA. Nous avons aussi trouvé que les niveaux d'expression des enzymes SET-1A et LSD1 sont élevés au niveau du cartilage OA. Nos résultats montrent, pour la première fois, l'implication de la méthylation/ déméthylation des histones dans la régulation de l’expression des gènes COX-2, mPGES-1, et iNOS. Ces données suggèrent que ces mécanismes pourraient être une cible potentielle pour une intervention pharmacologique dans le traitement de la physiopathologie de l'OA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Loss of the short arm of chromosome 1 is frequently observed in many tumor types, including melanoma. We recently localized a third melanoma susceptibility locus to chromosome band 1p22. Critical recombinants in linked families localized the gene to a 15-Mb region between D1S430 and D1S2664. To map the locus more finely we have performed studies to assess allelic loss across the region in a panel of melanomas from 1p22-linked families, sporadic melanomas, and melanoma cell lines. Eighty percent of familial melanomas exhibited loss of heterozygosity (LOH) within the region, with a smallest region of overlapping deletions (SRO) of 9 Mb between D1S207 and D1S435. This high frequency of LOH makes it very likely that the susceptibility locus is a tumor suppressor. In sporadic tumors, four SROs were defined. SRO1 and SRO2 map within the critical recombinant and familial tumor region, indicating that one or the other is likely to harbor the susceptibility gene. However, SRO3 may also be significant because it overlaps with the markers with the highest 2-point LOD score (D1S2776), part of the linkage recombinant region, and the critical region defined in mesothelioma. The candidate genes PRKCL2 and GTF2B, within SRO2, and TGFBR3, CDC7, and EVI5, in a broad region encompassing SRO3, were screened in 1p22-linked melanoma kindreds, but no coding mutations were detected. Allelic loss in melanoma cell lines was significantly less frequent than in fresh tumors, indicating that this gene may not be involved late in progression, such as in overriding cellular senescence, necessary for the propagation of melanoma cells in culture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Asthma is an incapacitating disease of the respiratory system, which causes extensive morbidity and mortality worldwide. Asthma affects more than 300 million people globally(Masoli et al. 2004). In Australia, it affects 10.2% of the population (Masoli et al. 2004) and causes 60,000 people to be hospitalised annually. Health care expenditure due to asthma in Australia was $606 million in 2004–2005. There are four primary biological factors that function in the initiation and exacerbation of asthma. Airway inflammation is important as it is often the first response to an airway insult, initiating the three other components: bronchoconstriction, mucus hyper-secretion and hyper-reactivity. The mediators involved in asthma are still not well understood, and current anti-inflammatory corticosteroid treatments are not effective with all asthmatics. As there is currently no cure for asthma, and airway inflammation is the primary component of the disease, it is important that we understand and investigate the mediators of airway inflammation to look for a potential cure and to produce better therapeutics to treat the inflammation. Trefoil factors (TFFs) and secretoglobins (SCGBs) are small secreted proteins involved in the mediation of inflammation and epithelial restitution. TFFs are pro-inflammatory and SCGBs anti-inflammatory by nature. The hypothesis of this study is that in response to induced acute airway inflammation, the expression of TFF1 and TFF3 will increase and expression of SCGB1A1 and SCGB3A2 will decrease in non-asthmatics (N-A), asthmatics medicating with bronchodilators (A-BD) and asthmatics medicating with corticosteroids (A-ST). When comparing the three groups, we expect to see higher expression of the TFFs in the A-BD group compared to the N-A and A-ST groups, indicating that inflammation is mediated by TFFs in asthma and that corticosteroid medication controls their expression as part of the control of inflammation. We expect to see the opposite with SCGBs, with a greater decrease in the A-BD group compared to the other two groups, suggesting that the A-BD group has the least anti-inflammatory activity in response to inflammatory insult. Epigenetic modification plays a role in the regulation of genes that initiate disease states such as inflammatory conditions and cancers. Histone acetylation is one such modification, which involves the acetylation of histones in chromatin by histone acetyltransferases (HATs). This increases the transcription of genes involved with inflammation or enrols histone deacetylases (HDACs) to down-regulate the transcription of inflammatory genes. These HATs and HDACs work in a homeostatic fashion; however, in the event of inflammation, increased HAT activity can stimulate further inflammation, which is believed to be the mechanism involved in some inflammatory diseases. This study hypothesises that in response to inflammation, the expression of HDACs (HDAC1-5) will decrease and the expression of HATs (NCOA1-3, HAT-1 and CREBBP) will increase in all groups. When comparing the expression between the groups, it was expected that a greater decrease in HDACs and a greater increase in HATs will be seen in the A-BD group compared to the other two groups. This would identify histone acetylation as a mechanism involved in the inflammatory condition of asthma and indicate that corticosteroids may treat the inflammation in asthma at least in part by controlling histone acetylation. The aim of the project was to compare the expression of inflammatory genes TFF1, TFF3, SCGB1A1 and SCGB3A2, as well as to compare the gene expression of HDAC1-5, NCOA1-3, HAT-1 and CREBBP within and between N-A (n=15), A-BD (n=15) and A-ST (n=15) groups in response to inflammation. This was performed by collecting airway cells and proteins by sputum induction in three sessions. The sessions were coordinated into an initial baseline collection (SI-1), followed by a second session at least one week later (SI-2) and a third session, six hours after SI-2 to collect a sample containing the resultant acute inflammation caused in SI-2 (SI-3). Analysis of the SI-1 and SI-2 samples in all three groups had high amounts of variability between samples. The samples were taken at least one weak apart and the environmental stimuli on each participant outside of the testing sessions could not be controlled. For this reason, the SI-1 samples were not used for analysis; instead SI-2 and SI-3 samples were compared as they were same-day collections, reducing the probability of differences being due to anything other than the sputum induction. The gene expressions of the TFFs, SCGBs, HDACs and HATs were analysed using real-time PCR. Western blot analysis was performed to analyse the protein concentrations of the TFFs and SCGBs in secreted fractions of the sputum collection. Both the secreted and intracellular protein fractions collected from the sputum inductions for pre- and post-inflammation (SI-2, SI-3) samples of the N-A and A-BD groups were analysed using a proteomic method called iTRAQ. This allowed the comparison of the change in protein expression as a result of airway inflammation in each group. This technique was used as a discovery method to identify novel proteins that are modulated by induced acute airway inflammation. Any proteins of interest would then be further validated and used for future research. Inflammation was achieved in the SI-3 samples of the N-A group with a 21% unit increase in % neutrophils compared to SI-2 (p=0.01). The N-A group had a marked 5.5-fold decrease in HDAC1 gene expression in SI-3 compared to SI-2 (p=0.03). No differences were seen in any of the TFFs, SCGBs or any of the rest of the HDACs and HATs. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed increases in TFF1 and TFF3, and decreases in SCGB1A1 and SCGB3A2 for the majority of SI-3 samples compared to SI-2. The A-BD group also presented a marked increase in neutrophils in the SI-3 samples compared to SI-2 (27% unit increase, p=0.04). The A-BD group had a significant increase in TFF3 and SCGB1A1 gene expression concomitant with induced acute airway inflammation. A 7.3-fold increase in TFF3 (p=0.05) in SI-3 indicated that TFF3 is linked to inflammation in asthmatics. A 2.8-fold increase in SCGB1A1 (p=0.03) indicated that this gene is also up-regulated, suggesting that this SCGB is expressed to try to combat induced acute airway inflammation. No significant changes were seen in any of the other genes analysed. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed an increase in TFF1 and TFF3, and a decrease in SCGB1A1 and SCGB3A2 in SI-3, similar to that seen in the N-A group. The A-ST group was different from the A-BD group, characterised by the use of inhaled corticosteroid medication to treat asthma symptoms. Inhaled corticosteroids are known to treat asthma symptoms through the control of inflammation. Therefore, it was expected that corticosteroid medication would also control the expression of TFFs, SCGBs, HATs and HDACs. Gene expression results only identified a 7.6-fold decrease in HDAC2 expression in SI-3 (p=0.001), which is proposed to be due to the up-regulation of HDAC2 protein that is known to be a function of corticosteroid use. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. The gene expression in SI-2 and SI-3 in each group was compared. When comparing the A-BD group to the N-A group, a 9-fold increase in TFF3 (p=0.008) and a 34-fold increase in SCGB1A1 (p=0.03) were seen in the SI-3 samples. Comparisons of the A-ST group to the N-A group had an increased expression in SI-2 samples for HDAC5 (3.6-fold, p=0.04), NCOA2 (8.5-fold, p=0.04), NCOA3 (17-fold, p=0.01), HAT-1 (36-fold, p=0.003) and CREBBP (13-fold, p=0.001). The SI-3 samples in the A-ST group compared to the N-A group had increased expression for HDAC1 (6.4-fold, p=0.04), HDAC5 (5.2-fold, p=0.008), NCOA2 (9.6-fold, p=0.03), NCOA3 (16-fold, p=0.06), HAT-1 (41-fold, p<0.001) and CREBBP (31-fold, p=0.001). Comparisons of the A-ST group to the A-BD group had SI-2 increases in HDAC1 (3.8-fold, p=0.03), NCOA3 (4.5-fold, p=0.03), HAT-1 (5.3-fold, p=0.01) and CREBBP (23-fold, p=0.001), while SI-3 comparisons saw a decrease in HDAC2 (41-fold, p=0.008) and increases in HAT-1 (4.3-fold, p=0.003) and CREBBP (40-fold, p=0.001). Results showed that TFF3 and SCGB1A1 expression is higher in asthmatics than non-asthmatics and that histone acetylation is more active in the A-ST group than either the N-A or A-BD group, which suggests that histone acetylation activity may be positively correlated with asthma severity. The iTRAQ proteomic analysis of the secreted protein samples identified the SCGB1A1 protein and found it to be decreased in both the N-A and A-BD groups post-inflammation, but significantly so only in the A-BD group. Although no significant results were obtained from the western blot data, both groups displayed a decrease in SCGB1A1 concentration in SI-3 samples, suggesting a correlation with the proteomic data. Only 31 peptides were identified from the secreted samples. The intracellular iTRAQ analysis successfully identified 664 peptides, eight of which had differential expression in association with induced acute airway inflammation. Significant increases were seen in the A-BD group in SI-3 compared to SI-2 than in the N-A group in chloride intracellular channel protein 1, keratin-19, eosinophil cationic protein, calnexin, peroxiredoxin-5, and ATP-synthase delta subunit, while decreases were seen in cystatin-A and mucin-5AC. The iTRAQ analysis was only a discovery measure and further validation must be performed. In summary, the expression of TFFs and SCGBs differed between non-asthmatics and asthmatics. It is clear that TFF3 is active in the airway inflammation associated with asthma as indicated by an increase associated with inflammation in the A-BD group compared to the N-A group. Results for HDAC and HAT genes showed high HAT expression in the A-ST group compared to the N-A and A-BD groups, suggesting that histone acetyltransferases may be responsible for the characteristic unregulated inflammatory symptoms of asthmatics taking corticosteroids. Interestingly, corticosteroid medication did not seem to silence the expression of the analysed HAT genes, which indicates that corticosteroids may not control inflammation by direct regulation of HATs, but instead by competition, most probably with HDAC2 protein. As a discovery tool, iTRAQ is a potent method to both identify and compare the concentration of proteins between samples. The method is a powerful first step into the identification of novel proteins that are regulated in response to different treatments.