955 resultados para heat kernel,worldline model,perturbative quantum gravity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the causal approach to (2 + 1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (C) 1994 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the action functional S[g, phi] = integral d4 x square-root -g[R/k(1 + klambdaphi2) + partial derivative(mu)phi partial derivative(mu)phi] describes, in general, one and the same classical theory whatever may be the value of the coupling constant lambda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the behaviour of the system with N massive parallel rigid wires is analysed. The aim is to explore its resemblance to a system of multiple cosmic strings. Assuming that it behaves like a 'gas' of massive rigid wires, we use a thermodynamics approach to describe this system. We obtain a constraint relating the linear mass density of the massive wires, the number of the massive wires in the system and the dispersion velocity of the system. © 1996 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative dimensional integration method (NDIM) is a technique to deal with D-dimensional Feynman loop integrals. Since most of the physical quantities in perturbative Quantum Field Theory (pQFT) require the ability of solving them, the quicker and easier the method to evaluate them the better. The NDIM is a novel and promising technique, ipso facto requiring that we put it to test in different contexts and situations and compare the results it yields with those that we already know by other well-established methods. It is in this perspective that we consider here the calculation of an on-shell two-loop three point function in a massless theory. Surprisingly this approach provides twelve non-trivial results in terms of double power series. More astonishing than this is the fact that we can show these twelve solutions to be different representations for the same well-known single result obtained via other methods. It really comes to us as a surprise that the solution for the particular integral we are dealing with is twelvefold degenerate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass, and other properties of rotating neutron stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices such as the light-cone gauge entails the emergence of troublesome poles of the type (k · n)-α in the Feynman integrals. These come from the boson field propagator, where α = 1, 2, ⋯ and nμ is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development at this fronteer which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k · n)-α[(k - p) · n]-β (β = 1, 2, ⋯). In this work we demonstrate how all this can be done.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are reported of a search for a deviation in the jet production cross section from the prediction of perturbative quantum chromodynamics at next-to-leading order. The search is conducted using a 7 TeV proton-proton data sample corresponding to an integrated luminosity of 5.0 fb-1, collected with the Compact Muon Solenoid detector at the Large Hadron Collider. A deviation could arise from interactions characterized by a mass scale Λ too high to be probed directly at the LHC. Such phenomena can be modeled as contact interactions. No evidence of a deviation is found. Using the CL s criterion, lower limits are set on Λ of 9.9 TeV and 14.3 TeV at 95% confidence level for models with destructive and constructive interference, respectively. Limits obtained with a Bayesian method are also reported. © 2013 CERN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usando o formalismo relativístico no estudo da propagação de perturbações lineares em fluidos ideais, obtêm-se fortes analogias com os resultados encontrados na Teoria da Relatividade Geral. Neste contexto, de acordo com Unruh [W. Unruh, Phys. Rev. Letters 46, 1351 (1981)], é possível simular um espaço-tempo dotado de uma métrica efetiva em um fluído ideal barotrópico, irrotacional e perturbado por ondas acústicas. Esse espaço-tempo efetivo é chamado de espaço-tempo acústico e satisfaz as propriedades geométricas e cinemáticas de um espaço-tempo curvo. Neste trabalho estudamos os modos quasinormais (QNs) e os pólos de Regge (PRs) para um espaço-tempo acústico conhecido como buraco acústico canônico (BAC). No nosso estudo, usamos o método de expansão assintótica proposto por Dolan e Ottewill [S. R. Dolan e A. C. Ottewill, Class. Quantum Gravity 26, 225003 (2009)] para calcularmos, em termos arbitrários do número de overtone n, as frequências QNs e os momentos angulares para os PRs, bem como suas respectivas funções de onda. As frequências e as funções de onda dos modos QNs são expandidas em termos de potências inversas de L = l + 1/2 , onde l é o momento angular, enquanto que os momentos angulares e funções de onda dos PRs são expandidos em termos do inverso das frequências de oscilação do buraco acústico canônico. Comparamos os nossos resultados com os já existentes na literatura, que usam a aproximação de Wentzel-Kramers-Brillouin (WKB) como método de determinação dos modos QNs e dos PRs, e obtemos uma excelente concordância dentro do limite da aproximação eikonal (l ≥ 2 e l > n).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a 'blind injection challenge' similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs' angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M circle dot + 10M circle dot (50M circle dot + 50M circle dot) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to similar to 15% for 50M circle dot + 50M circle dot BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t) signal and the associated uncertainties. The systematic uncertainties of the h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 mu s at high frequency. A bias lower than 4 mu s and depending on the sky direction of the GW is also present.