964 resultados para graph-based regularization
Resumo:
Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.
Resumo:
For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.
Resumo:
We study the regularization problem for linear, constant coefficient descriptor systems Ex' = Ax+Bu, y1 = Cx, y2 = Γx' by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and E+BGΓ has a desired rank, i.e., there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedback gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.
Resumo:
We study linear variable coefficient control problems in descriptor form. Based on a behaviour approach and the general theory for linear differential algebraic systems we give the theoretical analysis and describe numerically stable methods to determine the structural properties of the system.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthogonality, alignment and adaptivity; however, they cannot make subjective design decisions. There are a few quad meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here, we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a flexible mechanism to allow external input, through the definition of alignment features that are respected during the mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface features. Published by Elsevier Ltd.
Resumo:
Aspect-oriented programming (AOP) is a promising technology that supports separation of crosscutting concerns (i.e., functionality that tends to be tangled with, and scattered through the rest of the system). In AOP, a method-like construct named advice is applied to join points in the system through a special construct named pointcut. This mechanism supports the modularization of crosscutting behavior; however, since the added interactions are not explicit in the source code, it is hard to ensure their correctness. To tackle this problem, this paper presents a rigorous coverage analysis approach to ensure exercising the logic of each advice - statements, branches, and def-use pairs - at each affected join point. To make this analysis possible, a structural model based on Java bytecode - called PointCut-based Del-Use Graph (PCDU) - is proposed, along with three integration testing criteria. Theoretical, empirical, and exploratory studies involving 12 aspect-oriented programs and several fault examples present evidence of the feasibility and effectiveness of the proposed approach. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
The increasing resistance of Mycobacterium tuberculosis to the existing drugs has alarmed the worldwide scientific community. In an attempt to overcome this problem, two models for the design and prediction of new antituberculosis agents were obtained. The first used a mixed approach, containing descriptors based on fragments and the topological substructural molecular design approach (TOPS-MODE) descriptors. The other model used a combination of two-dimensional (2D) and three-dimensional (3D) descriptors. A data set of 167 compounds with great structural variability, 72 of them antituberculosis agents and 95 compounds belonging to other pharmaceutical categories, was analyzed. The first model showed sensitivity, specificity, and accuracy values above 80% and the second one showed values higher than 75% for these statistical indices. Subsequently, 12 structures of imidazoles not included in this study were designed, taking into account the two models. In both cases accuracy was 100%, showing that the methodology in silico developed by us is promising for the rational design of antituberculosis drugs.
Resumo:
The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.
Resumo:
Early psychiatry investigated dreams to understand psychopathologies. Contemporary psychiatry, which neglects dreams, has been criticized for lack of objectivity. In search of quantitative insight into the structure of psychotic speech, we investigated speech graph attributes (SGA) in patients with schizophrenia, bipolar disorder type I, and non-psychotic controls as they reported waking and dream contents. Schizophrenic subjects spoke with reduced connectivity, in tight correlation with negative and cognitive symptoms measured by standard psychometric scales. Bipolar and control subjects were undistinguishable by waking reports, but in dream reports bipolar subjects showed significantly less connectivity. Dream-related SGA outperformed psychometric scores or waking-related data for group sorting. Altogether, the results indicate that online and offline processing, the two most fundamental modes of brain operation, produce nearly opposite effects on recollections: While dreaming exposes differences in the mnemonic records across individuals, waking dampens distinctions. The results also demonstrate the feasibility of the differential diagnosis of psychosis based on the analysis of dream graphs, pointing to a fast, low-cost and language-invariant tool for psychiatric diagnosis and the objective search for biomarkers. The Freudian notion that ‘‘dreams are the royal road to the unconscious’’ is clinically useful, after all.
Resumo:
Early psychiatry investigated dreams to understand psychopathologies. Contemporary psychiatry, which neglects dreams, has been criticized for lack of objectivity. In search of quantitative insight into the structure of psychotic speech, we investigated speech graph attributes (SGA) in patients with schizophrenia, bipolar disorder type I, and non-psychotic controls as they reported waking and dream contents. Schizophrenic subjects spoke with reduced connectivity, in tight correlation with negative and cognitive symptoms measured by standard psychometric scales. Bipolar and control subjects were undistinguishable by waking reports, but in dream reports bipolar subjects showed significantly less connectivity. Dream-related SGA outperformed psychometric scores or waking-related data for group sorting. Altogether, the results indicate that online and offline processing, the two most fundamental modes of brain operation, produce nearly opposite effects on recollections: While dreaming exposes differences in the mnemonic records across individuals, waking dampens distinctions. The results also demonstrate the feasibility of the differential diagnosis of psychosis based on the analysis of dream graphs, pointing to a fast, low-cost and language-invariant tool for psychiatric diagnosis and the objective search for biomarkers. The Freudian notion that ‘‘dreams are the royal road to the unconscious’’ is clinically useful, after all
Resumo:
Early psychiatry investigated dreams to understand psychopathologies. Contemporary psychiatry, which neglects dreams, has been criticized for lack of objectivity. In search of quantitative insight into the structure of psychotic speech, we investigated speech graph attributes (SGA) in patients with schizophrenia, bipolar disorder type I, and non-psychotic controls as they reported waking and dream contents. Schizophrenic subjects spoke with reduced connectivity, in tight correlation with negative and cognitive symptoms measured by standard psychometric scales. Bipolar and control subjects were undistinguishable by waking reports, but in dream reports bipolar subjects showed significantly less connectivity. Dream-related SGA outperformed psychometric scores or waking-related data for group sorting. Altogether, the results indicate that online and offline processing, the two most fundamental modes of brain operation, produce nearly opposite effects on recollections: While dreaming exposes differences in the mnemonic records across individuals, waking dampens distinctions. The results also demonstrate the feasibility of the differential diagnosis of psychosis based on the analysis of dream graphs, pointing to a fast, low-cost and language-invariant tool for psychiatric diagnosis and the objective search for biomarkers. The Freudian notion that ‘‘dreams are the royal road to the unconscious’’ is clinically useful, after all
Resumo:
Early psychiatry investigated dreams to understand psychopathologies. Contemporary psychiatry, which neglects dreams, has been criticized for lack of objectivity. In search of quantitative insight into the structure of psychotic speech, we investigated speech graph attributes (SGA) in patients with schizophrenia, bipolar disorder type I, and non-psychotic controls as they reported waking and dream contents. Schizophrenic subjects spoke with reduced connectivity, in tight correlation with negative and cognitive symptoms measured by standard psychometric scales. Bipolar and control subjects were undistinguishable by waking reports, but in dream reports bipolar subjects showed significantly less connectivity. Dream-related SGA outperformed psychometric scores or waking-related data for group sorting. Altogether, the results indicate that online and offline processing, the two most fundamental modes of brain operation, produce nearly opposite effects on recollections: While dreaming exposes differences in the mnemonic records across individuals, waking dampens distinctions. The results also demonstrate the feasibility of the differential diagnosis of psychosis based on the analysis of dream graphs, pointing to a fast, low-cost and language-invariant tool for psychiatric diagnosis and the objective search for biomarkers. The Freudian notion that ‘‘dreams are the royal road to the unconscious’’ is clinically useful, after all.