996 resultados para fibrillary acidic protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of dietary protein on oxidized cholesterol-induced alterations in linoleic acid and cholesterol metabolism were studied in 4-wk-old male Sprague-Dawley rats, using casein and soybean protein as dietary protein sources. The rats were fed one of the two proteins in cholesterol-free, 0.3% cholesterol or 0.3% oxidized cholesterol mixture diets using a pair-feeding protocol for 3 wk. In the soybean protein-fed group, rats fed oxidized cholesterol did not have lower activity of liver microsomal delta6 desaturase, the rate-limiting enzyme in the metabolism of linoleic acid to arachidonic acid, compared with rats fed cholesterol-free diet, whereas in the casein-fed group the desaturase activity was significantly greater in rats fed oxidized cholesterol than in those fed cholesterol-free diet. This was in contrast to a significant reduction in liver microsomal delta6 desaturase activity by cholesterol, irrespective of protein source. In general, these changes were reflected in the desaturation indices of liver phospholipids. Furthermore, soybean protein significantly increased the fecal excretion of neutral and acidic steroids and tended to reduce (P = 0.082) the accumulation of oxidized cholesterols in the liver. Thus, soybean protein partly modified some of the undesirable effects of oxidized cholesterol through its hypocholesterolemic effect and possibly through the modulation of hepatic delta6 desaturase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dermatophytes are a group of closely related fungi which are responsible for the great majority of superficial mycoses in humans and animals. Among various potential virulence factors, their secreted proteolytic activity attracts a lot of attention. Most dermatophyte-secreted proteases which have so far been isolated in vitro are neutral or alkaline enzymes. However, inspection of the recently decoded dermatophyte genomes revealed many other hypothetical secreted proteases, in particular acidic proteases similar to those characterized in Aspergillus spp. The validation of such genome predictions instigated the present study on two dermatophyte species, Microsporum canis and Arthroderma benhamiae. Both fungi were found to grow well in a protein medium at acidic pH, accompanied by extracellular proteolysis. Shotgun MS analysis of secreted protein revealed fundamentally different protease profiles during fungal growth in acidic versus neutral pH conditions. Most notably, novel dermatophyte-secreted proteases were identified at acidic pH such as pepsins, sedolisins and acidic carboxypeptidases. Therefore, our results not only support genome predictions, but demonstrate for the first time the secretion of acidic proteases by dermatophytes. Our findings also suggest the existence of different pathways of protein degradation into amino acids and short peptides in these highly specialized pathogenic fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five bovine milk protein polymorphisms were studied in Zebuine cattle raised in Brazil, through horizontal electrophoresis on starch gel containing urea and 2-mercaptoethanol, using basic and acidic buffer systems. Allelic frequencies for a-La, b-Lg, aS1-Cn, b-Cn and k-Cn loci were estimated in six Gyr herds (N = 283), six Guzerat herds (N = 205), one Nelore herd (N = 17) and one Sindi herd (N = 22), all from São Paulo or Minas Gerais State, Brazil. Genotypic frequencies observed for each locus and breed studied are in accordance with the assumption of genetic equilibrium, demonstrating absence of high inbreeding levels for the breeds tested. The FST value found indicated significant genetic differentiation among breeds; however, the Gyr and Guzerat herds showed significantly different gene frequencies. Genetic distance estimates among zebuine breeds studied and the Holstein breed, taken as a reference for a taurine breed, showed strong differences between these two racial groups

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) non-structural 5A protein (NS5A) contains a highly conserved C-terminal polyproline motif with the consensus sequence Pro-X-X- Pro-X-Arg that is able to interact with the Src-homology 3 (SH3) domains of a variety of cellular proteins. Results: To understand this interaction in more detail we have expressed two N-terminally truncated forms of NS5A in E. coli and examined their interactions with the SH3 domain of the Src-family tyrosine kinase, Fyn. Surface plasmon resonance analysis revealed that NS5A binds to the Fyn SH3 domain with what can be considered a high affinity SH3 domain-ligand interaction (629 nM), and this binding did not require the presence of domain I of NS5A (amino acid residues 32-250). Mutagenic analysis of the Fyn SH3 domain demonstrated the requirement for an acidic cluster at the C-terminus of the RT-Src loop of the SH3 domain, as well as several highly conserved residues previously shown to participate in SH3 domain peptide binding. Conclusion: We conclude that the NS5A: Fyn SH3 domain interaction occurs via a canonical SH3 domain binding site and the high affinity of the interaction suggests that NS5A would be able to compete with cognate Fyn ligands within the infected cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of the gene encoding ribosome modulation factor (RMF), as measured using an rmf-lacZ gene fusion, increased with decreasing pH in exponential phase cultures of Escherichia coli. Expression was inversely proportional to the growth rate and independent of the acidifying agent used and it was concluded that expression of rmf was growth rate controlled in exponential phase under acid conditions. Increased rmf expression during exponential phase was not accompanied by the formation of ribosome dimers as occurs during stationary phase. Nor did it appear to have a significant effect on cell survival under acid stress since the vulnerability of an RMF-deficient mutant strain was similar to that of the parent strain. Ribosome degradation was increased in the mutant strain compared to the parent strain at pH 3.75. Also, the peptide elongation rate was reduced in the mutant strain but not the parent during growth under acid conditions. It is speculated that the function of RMF during stress-induced reduction in growth rate is two-fold: firstly to prevent reduced elongation efficiency by inactivating surplus ribosomes and thus limiting competition for available protein synthesis factors, and secondly to protect inactivated ribosomes from degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The survival of Bifidobacterium longum NCIMB 8809 was studied during refrigerated storage for 6 weeks in model solutions, based on which a mathematical model was constructed describing cell survival as a function of pH, citric acid, protein and dietary fibre. A Central Composite Design (CCD) was developed studying the influence of four factors at three levels, i.e., pH (3.2–4), citric acid (2–15 g/l), protein (0–10 g/l), and dietary fibre (0–8 g/l). In total, 31 experimental runs were carried out. Analysis of variance (ANOVA) of the regression model demonstrated that the model fitted well the data. From the regression coefficients it was deduced that all four factors had a statistically significant (P < 0.05) negative effect on the log decrease [log10N0 week−log10N6 week], with the pH and citric acid being the most influential ones. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate and strawberry. The highest cell survival (less than 0.4 log decrease) after 6 weeks of storage was observed in orange and pineapple, both of which had a pH of about 3.8. Although the pH of grapefruit and blackcurrant was similar (pH ∼3.2), the log decrease of the former was ∼0.5 log, whereas of the latter was ∼0.7 log. One reason for this could be the fact that grapefruit contained a high amount of citric acid (15.3 g/l). The log decrease in pomegranate and strawberry juices was extremely high (∼8 logs). The mathematical model was able to predict adequately the cell survival in orange, grapefruit, blackcurrant, and pineapple juices. However, the model failed to predict the cell survival in pomegranate and strawberry, most likely due to the very high levels of phenolic compounds in these two juices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triatoma infestans (Hemiptera: Reduviidae) is a hematophagous insect that transmits the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas` disease. Its saliva contains trialysin, a protein that forms pores in membranes. Peptides based on the N-terminus of trialysin lyse cells and fold into alpha-helical amphipathic segments resembling antimicrobial peptides. Using a specific antiserum against trialysin, we show here that trialysin is synthesized as a precursor that is less active than the protein released after saliva secretion. A synthetic peptide flanked by a fluorophore and a quencher including the acidic proregion and the lytic N-terminus of the protein is also less active against cells and liposomes, increasing activity upon proteolysis. Activation changes the peptide conformation as observed by fluorescence increase and CD spectroscopy. This mechanism of activation could provide a way to impair the toxic effects of trialysin inside the salivary glands, thus restricting damaging lytic activity to the bite site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipases A(2) belong to the superfamily of proteins which hydrolyzes the sn-2 acyl groups of membrane phospholipids to release arachidonic acid and lysophospholipids. An acidic phospholipase A(2) isolated from Bothrops juraracussu snake venom presents a high catalytic, platelet aggregation inhibition and hypotensive activities. This protein was crystallized in two oligomeric states: monomeric and dimeric. The crystal structures were solved at 1.79 and 1.90 Angstrom resolution, respectively, for the two states. It was identified a Na+ ion at the center of Ca2+-binding site of the monomeric form. A novel dimeric conformation with the active sites exposed to the solvent was observed. Conformational states of the molecule may be due to the physicochemical conditions used in the crystallization experiments. We suggest dimeric state is one found in vivo. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most commercial recombinant proteins used as molecular biology tools, as well as many academically made preparations, are generally maintained in the presence of high glycerol concentrations after purification to maintain their biological activity. The present study shows that larger proteins containing high concentrations of glycerol are not amenable to analysis using conventional electrospray ionization mass spectrometry (ESI-MS) interfaces. In this investigation the presence of 25% (v/v) glycerol suppressed the signals of Taq DNA polymerase molecules, while 1% (v/v) glycerol suppressed the signal of horse heart myoglobin. The signal suppression was probably caused by the interaction of glycerol molecules with the proteins to create a shielding effect that prevents the ionization of the basic and/or acidic groups in the amino acid side chains. To overcome this difficulty the glycerol concentration was decreased to 5% (v/v) by dialyzing the Taq polymerase solution against water, and the cone voltage in the ESI triple-quadrupole mass spectrometer was set at 80-130 V. This permitted observation of a mass spectrum that contained ions corresponding to protonation of up to 50% of the ionizable basic groups. In the absence of glycerol up to 85% of the basic groups of Taq polymerase became ionized, as observed in the mass spectrum at relatively low cone voltages. An explanation of these and other observations is proposed, based on strong interactions between the protein molecules and glycerol. For purposes of comparison similar experiments were performed on myoglobin, a small protein with 21 basic groups, whose ionization was apparently suppressed in the presence of 1% (v/v) glycerol, since no mass spectrum could be obtained even at high cone voltages. Copyright (C) 2003 John Wiley Sons, Ltd.