933 resultados para elliptical human detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed to detect Echis carinatus venom in various organs (brain, heart, lungs, liver, spleen and kidneys) as well as tissue at the site of injection of mice, at various time intervals (1, 6, 12, 18, 24 h and 12 h intervals up to 72 h) after death. The assay could detect E. carinatus venom levels up to 2.5 ng/ml of tissue homogenate and the venom was detected up to 72 h after death. A highly sensitive and species-specific avidin-biotin microtitre ELISA was also developed to detect venoms of four medically important Indian snakes (Bungarus caeruleus, Naja naja, E. carinatus and Daboia russelli russelli) in autopsy specimens of human victims of snake bite. The assay could detect venom levels as low as 100 pg/ml of tissue homogenate. Venoms were detected in brain, heart, lungs, liver, spleen, kidneys, tissue at the bite area and postmortem blood. In all 12 human victim cadavers tested the culprit species were identified. As observed in mice, tissue at the site of bite area showed the highest concentration of venom and the brain showed the least. Moderate amounts of venoms were found in liver, spleen, kidneys, heart and lungs. Development of a simple, rapid and species-specific diagnostic kit based on this ELISA technique useful to clinicians is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report electron microscopic evidence of transmission from a pet dog to a 12-year-girl of Gastrospirillum hominis which caused gastric disease in both that was eradicable with treatment. © 1994.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human herpesvirus 6 (HHV-6) was identified from patients with HIV and lymphoproliferative diseases in 1986. It is a β-herpesvirus and is divided into two subgroups, variants A and B. HHV-6 variant B is the cause of exanthema subitum, while variant A has not yet definitely proven to cause any disease. HHV-6, especially variant A, is a highly neurotropic virus and has been associated with many diseases of the central nervous system (CNS) such as encephalitis and multiple sclerosis (MS). The present studies were aimed to elucidate the role of HHV-6 and its two variants in neurological infections. Special attention was given to study the possible role of HHV-6 in the pathogenesis of MS. We studied the expression of HHV-6 antigens using immunohistochemistry in brain autopsy samples from patients with MS and controls. HHV-6 antigen was identified in 70% of MS specimens whereas 30% of control specimens expressed HHV-6 antigen. Serum and cerebrospinal fluid (CSF) samples were collected from patients with MS and patients with other neurological diseases (OND) from patients visiting Helsinki University Central Hospital Neurological Outpatient Clinic during the years 2003 and 2004. In addition, we studied 53 children with suspected encephalitis. We developed an immunofluorescence IgG-avidity assay for the detection of primary HHV-6A and HHV-6B infection. For HHV-6B antibodies, no differences were observed between patients with MS and OND. For HHV-6A both seroprevalence and mean titers were significantly higher in MS compared to OND. HHV-6A low-avidity IgG antibodies, suggestive of primary infection, were found in serum of two, three and one patient with definite MS, possible MS and OND, respectively. From pediatric patients with suspected encephalitis, six serum samples (11.3%) contained low-avidity antibodies, indicating a temporal association between HHV-6A infection and onset of encephalitis. Three out of 26 patients with CDMS and four out of 19 patients with CPMS had HHV-6 antibodies in their CSF compared to none of the patients with OND (p=0.06 and p=0.01, respectively). Two patients with CDMS and three patients with CPMS appeared to have specific intrathecal synthesis of HHV-6A antibodies. In addition, oligoclonal bands (OCB) were observed in the CSF of five out of nine MS patients tested, and in two the OCBs reacted specifically with HHV-6 antigen, which is a novel finding. These results indicate HHV-6 specific antibody production in the CNS and suggest that there is a subset of MS patients with an active or chronic HHV-6A infection in the CNS that might be involved in the pathogenesis of MS. Our studies suggest that HHV-6 is an important causative or associated virus in some neurological infections, such as encephalitis and it might contribute to the development of MS, at least in some cases. In conclusion, HHV-6 is a neurotropic virus that should be taken into consideration when studying acute and chronic CNS diseases of unknown origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking log of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value = 1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yersinia enterocolitica and Yersinia pseudotuberculosis are among the major enteropathogenic bacteria causing infections in humans in many industrialized countries. In Finland, Y. pseudotuberculosis has caused 10 outbreaks among humans during 1997-2008. Some of these outbreaks have been very extensive involving over 400 cases; mainly children attending schools and day-care. Y. enterocolitica, on the contrary, has caused mainly a large number of sporadic human infections in Finland. Y. pseudotuberculosis is widespread in nature, causing infections in a variety of domestic and wild animals. Foodborne transmission of human infections has long been suspected, however, attempts to trace the pathogen have been unsuccessful before this study that epidemiologically linked Y. pseudotuberculosis to a specific food item. Furthermore, due to modern food distribution systems, foodborne outbreaks usually involve many geographically separate infection clusters difficult to identify as part of the same outbreak. Among pathogenic Y. enterocolitica, the global predominance of one genetically homogeneous type (bioserotype 4/O:3) is a challenge to the development of genetic typing methods discriminatory enough for epidemiological purposes, for example, for tracing back to the sources of infections. Furthermore, the diagnostics of Y. enterocolitica infections is hampered because clinical laboratories easily misidentify some other members of the Yersinia species (Y. enterocolitica–like species) as Y. enterocolitica. This results in misleading information on the prevalence and clinical significance of various Yersinia isolates. The aim of this study was to develop and optimize molecular typing methods to be used in epidemiological investigations of Y. enterocolitica and Y. pseudotuberculosis, particularly in active surveillance and outbreak investigations of Y. pseudotuberculosis isolates. The aim was also to develop a simplified set of phenotypic tests that could be used in routine diagnostic laboratories for the correct identification of Y. enterocolitica and Y. enterocolitica –like species. A PFGE method designed here for typing of Y. pseudotuberculosis was efficient in linking the geographically dispersed and apparently unrelated Y. pseudotuberculosis infections as parts of the same outbreak. It proved to be useful in active laboratory-based surveillance of Y. pseudotuberculosis outbreaks. Throughout the study period, information about the diversity of genotypes among outbreak and non-outbreak related strains of human origin was obtained. Also, to our knowledge, this was the first study to epidemiologically link a Y. pseudotuberculosis outbreak of human illnesses to a specific food item, iceberg lettuce. A novel epidemiological typing method based on the use of a repeated genomic region (YeO:3RS) as a probe was developed for the detection and differentiation between strains of Y. enterocolitica subspecies palearctica. This method was able to increase the discrimination in a set of 106 previously PFGE typed Finnish Y. enterocolitica bioserotype 4/O:3 strains among which two main PFGE genotypes had prevailed. The developed simplified method was a more reliable tool than the commercially available biochemical test kits for differentiation between Y. enterocolitica and Y. enterocolitica –like species. In Finland, the methods developed for Y. enterocolitica and Y. pseudotuberculosis have been used to improve the identification protocols and in subsequent outbreak investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant glycosylation of proteins is a hallmark of tumorigenesis, and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is non-invasive, technically straightforward and the sample collection and storage is relatively easy. Although, differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimised a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analysed with LC-MS/MS to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ginger is considered by many people to be the outstanding member among 1400 other species in the family Zingiberaceae. Not only it is a valuable spice used by cooks throughout the world to impart unique flavour to their dishes but it also has a long track record in some Chinese and Indian cultures for treating common human ailments such as colds and headaches. Ginger has recently attracted considerable attention for its anti-inflammatory, antibacterial and antifungal properties. However, ginger as a crop is also susceptible to at least 24 different plant pathogens, including viruses, bacteria, fungi and nematodes. Of these, Pythium spp. (within the kingdom Stramenopila, phyllum Oomycota) are of most concern because various species can cause rotting and yield loss on ginger at any of the growth stages including during postharvest storage. Pythium gracile was the first species in the genus to be reported as a ginger pathogen, causing Pythium soft rot disease in India in 1907. Thereafter, numerous other Pythium spp. have been recorded from ginger growing regions throughout the world. Today, 15 Pythium species have been implicated as pathogens of the soft rot disease. Because accurate identification of a pathogen is the cornerstone of effective disease management programs, this review will focus on how to detect, identify and control Pythium spp. in general, with special emphasis on Pythium spp. associated with soft rot on ginger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, there are nine known human herpesviruses and these viruses appear to have been a very common companion of humans throughout the millenia. Of human herpesviruses, herpes simplex viruses 1 and 2 (HSV-1, HSV-2), causative agents of herpes labialis and genital herpes, and varicella-zoster virus (VZV), causative agent of chicken pox, are also common causes of central nervous system (CNS) infections. In addition, human cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), all members of the herpesvirus family, can also be associated with encephalitis and meningitis. Accurate diagnostics and fast treatment are essential for patient recovery in CNS infections and therefore sensitive and effective diagnostic methods are needed. The aim of this thesis was to develop new potential detection methods for diagnosing of human herpesvirus infections, especially in immunocompetent patients, using the microarray technique. Therefore, methods based on microarrays were developed for simultaneous detection of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6A, HHV-6B, and HHV-7 nucleic acids, and for HSV-1, HSV-2, VZV, and CMV antibodies from various clinical samples. The microarray methods developed showed potential for efficiently and accurately detecting human herpesvirus DNAs, especially in CNS infections, and for simultaneous detection of DNAs or antibodies for multiple different human herpesviruses from clinical samples. In fact, the microarray method revealed several previously unrecognized co-infections. The microarray methods developed were sensitive and provided rapid detection of human herpesvirus DNA, and therefore the method could be applied to routine diagnostics. The microarrays might also be considered as an economical tool for diagnosing human herpesvirus infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

VP6, the intermediate capsid protein of the virion, specifies subgroup specificity of rotavirus, It is also the most conserved, both at nucleotide and amino acid levels, among group A rotaviruses and is the target of choice for rotavirus detection, In this study we report the sequence of the subgroup I (SGI)-specific VP6 from the serotype G2 strain IS2 isolated from a child suffering from acute diarrhoea in Bangalore ana its comparison with the published VP6 sequences. Interestingly, IS2 gene 6 shared highest homology with that from bovine UK strain and the protein contained substitutions by lysine at amino acid positions 97 and 134, In contrast, the amino acids Met and Glu/Asp at these respective positions are highly conserved in all the other group A rotaviruses sequenced so far, These observations have obvious implications for the evolution of serotype G2 and G2-like strains circulating in India, The SGI VP6, of a human rotavirus, possessing epitopes that are conformationally similar to those found in the native protein in the virion, was successfully expressed in E. coli and purified for the first time by single-step affinity chromatography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.