999 resultados para coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers in detail the dynamics of two oscillators with weak nonlinear coupling. There are three classes of such problems: non-resonant, where the Poincaré procedure is valid to the order considered; weakly resonant, where the Poincaré procedure breaks down because small divisors appear (but do not affect the O(1) term) and strongly resonant, where small divisors appear and lead to O(1) corrections. A perturbation method based on Cole's two-timing procedure is introduced. It avoids the small divisor problem in a straightforward manner, gives accurate answers which are valid for long times, and appears capable of handling all three types of problems with no change in the basic approach.

One example of each type is studied with the aid of this procedure: for the nonresonant case the answer is equivalent to the Poincaré result; for the weakly resonant case the analytic form of the answer is found to depend (smoothly) on the difference between the initial energies of the two oscillators; for the strongly resonant case we find that the amplitudes of the two oscillators vary slowly with time as elliptic functions of ϵ t, where ϵ is the (small) coupling parameter.

Our results suggest that, as one might expect, the dynamical behavior of such systems varies smoothly with changes in the ratio of the fundamental frequencies of the two oscillators. Thus the pathological behavior of Whittaker's adelphic integrals as the frequency ratio is varied appears to be due to the fact that Whittaker ignored the small divisor problem. The energy sharing properties of these systems appear to depend strongly on the initial conditions, so that the systems not ergodic.

The perturbation procedure appears to be applicable to a wide variety of other problems in addition to those considered here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations of fs laser propagation in water have been made to explain the small-scale filaments in water we have observed by a nonlinear fluorescence technique. Some analytical descriptions combined with numerical simulations show that a space-frequency coupling mainly from the interplay among self-phase modulation, dispersion and phase mismatching will reshape the laser beam into a conical wave which plays a major role of energy redistribution and can prevent laser beam from self-guiding over a long distance. An effective group velocity dispersion is introduced to explain the pulse broadening and compression in the filamentation. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and experimental results are presented for simultaneous multibeam coupling in photorefractive SBN:Ce. Within a single crystal, multiple signals are amplified through a coupling process that employs a single pump. The coupling gain of each signal results from coupling both between the pump and the signal and between different signals. The amount of gain that each signal receives is dependent on the intensity of the incident signal; thus a competition for the gain exists among the various signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dilution refrigerator has been constructed capable of producing steady state temperatures less than .075°K. The first part of this work is concerned with the design and construction of this machine. Enough theory is presented to allow one to understand the operation and critical design factors of a dilution refrigerator. The performance of our refrigerator is compared with the operating characteristics of three other dilution refrigerators appearing in the present literature.

The dilution refrigerator constructed was used to measure the nuclear contribution to the low temperature specific heat of a pure, single-crystalline sample of rhenium metal. Measurements were made in magnetic fields from 0 to 12.5 kOe for the temperature range .13°K - .52°K. The second part of this work discusses the results of these experiments. The expected nuclear contribution is not found when the sample is in the superconducting state. This is believed to be due to the long spin-lattice relaxation times in superconductors. In the normal state, for the temperature range studied, the nuclear contribution is given by A/T2 where A = .061 ± .002 millijoules-K/mole. The value of A is found to increase to A = .077 ± .004 millijoules-K/mole when the sample is located in a magnetic field of 12.5 kOe.

From the measured value of A the splitting of the energy levels of the nuclear spin system due to the interaction of the internal crystalline electric field gradients with the nuclear quadrupole moments is calculated. A comparison is made between the predicted and measured magnetic dependence of the specific heat. Finally, predictions are made of future nuclear magnetic resonance experiments which may be performed to check the results obtained by calorimetery here and further, to investigate existing theories concerning the sources of electric field gradients in metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I.

The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written

HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”

Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.

The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.

Part II.

The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:

F/Caa = -1.0 ± 0.5 kHz

F/Cbb = -2.7 ± 0.2 kHz

F/Ccc = -1.9 ± 0.1 kHz

From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ - σ, is +160 ± 30 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.

Part II

The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.

Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.

It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."

Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss coupling of ultrashort light pulses into waveguides by use of a prism waveguide coupler configuration. Theoretical analysis indicates that an extra loss induced by the short coherence times of ultrashort pulses, which has a strong effect on the reflected light and the optimum coupling condition, appears in the waveguide. Numerical simulations show that the reflectance strongly depends on the coherence times of ultrashort pulses. A method for realizing optimum coupling by compensating for the extra loss is proposed as well in this paper. A preliminary experiment of employing ultrashort pulses with different coherence times was carried out, and good agreement between theory and experiment was obtained. (c) 2006 Optical Society of America.