992 resultados para controlled variable
Resumo:
We report a method for controlling the exposed facets and hence the dimensionality and shape of ZnO nanocrystals using a non-hydrolytic aminolysis synthesis route. The effects of changes to reaction conditions on ZnO formation were investigated and possible self-assembly mechanisms proposed. The crystal facet growth and hence morphologies of the ZnO nanocrystals were controlled by varying reaction temperature and the reactant ratio. Four distinct ZnO nanocrystal types were produced (nanocones, nanobullets, nanorods and nanoplates). The relative photocatalytic activities of the exposed facets of these ZnO nanostructures were also examined, which showed the activities obviously depended on the reactivity of exposed crystal facets in the order: {1011}>>{0001}, {1010}.
Resumo:
Fusion techniques have received considerable attention for achieving lower error rates with biometrics. A fused classifier architecture based on sequential integration of multi-instance and multi-sample fusion schemes allows controlled trade-off between false alarms and false rejects. Expressions for each type of error for the fused system have previously been derived for the case of statistically independent classifier decisions. It is shown in this paper that the performance of this architecture can be improved by modelling the correlation between classifier decisions. Correlation modelling also enables better tuning of fusion model parameters, ‘N’, the number of classifiers and ‘M’, the number of attempts/samples, and facilitates the determination of error bounds for false rejects and false accepts for each specific user. Error trade-off performance of the architecture is evaluated using HMM based speaker verification on utterances of individual digits. Results show that performance is improved for the case of favourable correlated decisions. The architecture investigated here is directly applicable to speaker verification from spoken digit strings such as credit card numbers in telephone or voice over internet protocol based applications. It is also applicable to other biometric modalities such as finger prints and handwriting samples.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
Fusion techniques have received considerable attention for achieving performance improvement with biometrics. While a multi-sample fusion architecture reduces false rejects, it also increases false accepts. This impact on performance also depends on the nature of subsequent attempts, i.e., random or adaptive. Expressions for error rates are presented and experimentally evaluated in this work by considering the multi-sample fusion architecture for text-dependent speaker verification using HMM based digit dependent speaker models. Analysis incorporating correlation modeling demonstrates that the use of adaptive samples improves overall fusion performance compared to randomly repeated samples. For a text dependent speaker verification system using digit strings, sequential decision fusion of seven instances with three random samples is shown to reduce the overall error of the verification system by 26% which can be further reduced by 6% for adaptive samples. This analysis novel in its treatment of random and adaptive multiple presentations within a sequential fused decision architecture, is also applicable to other biometric modalities such as finger prints and handwriting samples.
Resumo:
Statistical dependence between classifier decisions is often shown to improve performance over statistically independent decisions. Though the solution for favourable dependence between two classifier decisions has been derived, the theoretical analysis for the general case of 'n' client and impostor decision fusion has not been presented before. This paper presents the expressions developed for favourable dependence of multi-instance and multi-sample fusion schemes that employ 'AND' and 'OR' rules. The expressions are experimentally evaluated by considering the proposed architecture for text-dependent speaker verification using HMM based digit dependent speaker models. The improvement in fusion performance is found to be higher when digit combinations with favourable client and impostor decisions are used for speaker verification. The total error rate of 20% for fusion of independent decisions is reduced to 2.1% for fusion of decisions that are favourable for both client and impostors. The expressions developed here are also applicable to other biometric modalities, such as finger prints and handwriting samples, for reliable identity verification.
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.
Resumo:
Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbra variable order (VO) time fractional operator, which defines a consistent method for VO differentiation of physical variables. The Coimbra variable order fractional operator also can be viewed as a Caputo-type definition. Although this definition is the most appropriate definition having fundamental characteristics that are desirable for physical modeling, numerical methods for fractional partial differential equations using this definition have not yet appeared in the literature. Here an approximate scheme is first proposed. The stability, convergence and solvability of this numerical scheme are discussed via the technique of Fourier analysis. Numerical examples are provided to show that the numerical method is computationally efficient. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.
Resumo:
Background Older people have higher rates of hospital admission than the general population and higher rates of readmission due to complications and falls. During hospitalisation, older people experience significant functional decline which impairs their future independence and quality of life. Acute hospital services comprise the largest section of health expenditure in Australia and prevention or delay of disease is known to produce more effective use of services. Current models of discharge planning and follow-up care, however, do not address the need to prevent deconditioning or functional decline. This paper describes the protocol of a randomised controlled trial which aims to evaluate innovative transitional care strategies to reduce unplanned readmissions and improve functional status, independence, and psycho-social well-being of community-based older people at risk of readmission. Methods/Design The study is a randomised controlled trial. Within 72 hours of hospital admission, a sample of older adults fitting the inclusion/exclusion criteria (aged 65 years and over, admitted with a medical diagnosis, able to walk independently for 3 meters, and at least one risk factor for readmission) are randomised into one of four groups: 1) the usual care control group, 2) the exercise and in-home/telephone follow-up intervention group, 3) the exercise only intervention group, or 4) the in-home/telephone follow-up only intervention group. The usual care control group receive usual discharge planning provided by the health service. In addition to usual care, the exercise and in-home/telephone follow-up intervention group receive an intervention consisting of a tailored exercise program, in-home visit and 24 week telephone follow-up by a gerontic nurse. The exercise only and in-home/telephone follow-up only intervention groups, in addition to usual care receive only the exercise or gerontic nurse components of the intervention respectively. Data collection is undertaken at baseline within 72 hours of hospital admission, 4 weeks following hospital discharge, 12 weeks following hospital discharge, and 24 weeks following hospital discharge. Outcome assessors are blinded to group allocation. Primary outcomes are emergency hospital readmissions and health service use, functional status, psychosocial well-being and cost effectiveness. Discussion The acute hospital sector comprises the largest component of health care system expenditure in developed countries, and older adults are the most frequent consumers. There are few trials to demonstrate effective models of transitional care to prevent emergency readmissions, loss of functional ability and independence in this population following an acute hospital admission. This study aims to address that gap and provide information for future health service planning which meets client needs and lowers the use of acute care services.