992 resultados para chemical recovery
Resumo:
The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.
Resumo:
Ide, BN, Leme, TCF, Lopes, CR, Moreira, A, Dechechi, CJ, Sarraipa, MF, da Mota, GR, Brenzikofer, R, and Macedo, DV. Time course of strength and power recovery after resistance training with different movement velocities. J Strength Cond Res 25(7): 2025-2033, 2011-The purpose of this study was to evaluate the time course of strength and power recovery after a single bout of strength training designed with fast and slow contraction velocities. Nineteen male subjects were randomly divided into 2 groups: the slow-velocity contraction (SV) group and the fast velocity contraction (FV) group. Resistance training protocols consisted of 5 sets of 12 repetition maximum (5 x 12RM) with 50 seconds of rest between sets and 2 minutes between exercises. Contraction velocity was controlled by the execution time for each repetition (SV-6 seconds to complete concentric and eccentric phases and for FV-1.5 seconds). Leg Press 45 degrees 1RM (LP 1RM), horizontal countermovement jump (HCMJ), and right thigh circumference (TC) were accessed in 6 distinct moments: base (1 week before exercise), 0 (immediately after exercises), 24, 48, 72, and 96 hours after exercise protocol. The SV and FV presented significant LP 1RM decrements at 0, and these were still evident 24-48 hours postexercise. The magnitude of decline was significantly (p<0.05) higher for FV. The SV and FV presented significant HCMJ decrements at 0, but only for FV were these still evident 24-72 hours postexercise. The SV and FV presented significant TC increments at 0, and these were still evident 24-48 hours postexercise for SV but for FV it continued up to 96 hours. The magnitude of increase was significantly (p<0.05) higher for FV. In conclusion, the fast contraction velocity protocol resulted in greater decreases in LP 1RM and HCMJ performance, when compared with slow velocity. The results lead us to interpret that this variable may exert direct influence on acute muscle strength and power generation capacity.
Resumo:
In this study, we investigated the effects of rapid weight loss followed by a 4-h recovery on judo-related performance. Seven weight-cycler athletes were assigned to a weight loss group (5% body weight reduction by self-selected regime) and seven non-weight-cyclers to a control group (no weight reduction). Body composition, performance, glucose, and lactate were assessed before and after weight reduction (5-7 days apart; control group kept weight stable). The weight loss group had 4 h to re-feed and rehydrate after the weigh-in. Food intake was recorded during the weight loss period and recovery after the weigh-in. Performance was evaluated through a specific judo exercise, followed by a 5-min judo combat and by three bouts of the Wingate test. Both groups significantly improved performance after the weight loss period. No interaction effects were observed. The energy and macronutrient intake of the weight loss group were significantly lower than for the control group. The weight loss group consumed large amounts of food and carbohydrate during the 4-h recovery period. No changes were observed in lactate concentration, but a significant decrease in glucose during rest was observed in the weight loss group. In conclusion, rapid weight loss did not affect judo-related performance in experienced weight-cyclers when the athletes had 4 h to recover. These results should not be extrapolated to inexperienced weight-cyclers.
Resumo:
The objective of the present study was to verify if active recovery (AR) applied after a judo match resulted in a better performance when compared to passive recovery (PR) in three tasks varying in specificity to the judo and in measurement of work performed: four upper-body Wingate tests (WT); special judo fitness test (SJFT); another match. For this purpose, three studies were conducted. Sixteen highly trained judo athletes took part in study 1, 9 in study 2, and 12 in study 3. During AR judokas ran (15 min) at the velocity corresponding to 70% of 4 mmol l(-1) blood lactate intensity (similar to 50% (V) over dotO(2) peak), while during PR they stayed seated at the competition area. The results indicated that the minimal recovery time reported in judo competitions (15 min) is long enough for sufficient recovery of WT performance and in a specific high-intensity test (SJFT). However, the odds ratio of winning a match increased ten times when a judoka performed AR and his opponent performed PR, but the cause of this phenomenon cannot be explained by changes in number of actions performed or by changes in match`s time structure.
Resumo:
Spent coffee grounds (SCG) the residual materials obtained during the processing of raw coffee powder to prepare instant coffee are the main coffee Industry residues In the present work this material was chemically characterized and subsequently submitted to a dilute acid hydrolysis aiming to recover the hemicellulose sugars Reactions were performed according to experimental designs to verify the effects of the variables H(2)SO(4) concentration liquid-to-solid ratio temperature and reaction time on the efficiency of hydrolysis SCG was found to be rich in sugars (45 3% w/w) among of which hemicellulose (constituted by mannose galactose and arabinose) and cellulose (glucose homopolymer) correspond to 367% (w/w) and 8 6% (w/w) respectively Optimal conditions for hemicellulose sugars extraction consisted in using 100 mg acid/g dry matter 10g liquid/g solid at 163 degrees C for 45 min Under these conditions hydrolysis efficiencies of 100% 774% and 895% may be achieved for galactan mannan and arabinan respectively corresponding to a hemicellulose hydrolysis efficiency of 874% (C) 2010 Elsevier Ltd All rights reserved
Resumo:
BACKGROUND: This work deals with the xylitol production by biotechnological routes emphasizing the purification process using crystallization. RESULTS: Xylitol volumetric productivity of 0.665 g L(-1) h(-1) and yield of 0.7024 g g(-1) were obtained after 92 h fermentation. The fermented broth (61.3 g L(-1) xylitol) was centrifuged, treated and concentrated obtain a syrup (745.3 g L(-1) xylitol) which was crystallized twice, xylitol crystals with 98.5-99.2% purity being obtained. CONCLUSION: The hypothetical distribution obtained permits the determination of modeling parameters, which make possible the estimation of crystal dominant size from different initial experimental conditions. (C) 2008 Society of Chemical Industry
Resumo:
Nyvlt method Was used to determine the kinetic parameters of commercial xylitol in ethanol:water (50:50 %w/w) Solution by batch cooling crystallization. The kinetic exponents (n, g and in) and the system kinetic constant (B(N)) were determined. Model experiments were carried Out in order to verify the combined effects of saturation temperatures (40, 50 and 60 degrees C) and cooling rates (0.10, 0.25 and 0.50 degrees C/min) on these parameters. The fitting between experimental and Calculated crystal sizes has 11.30% mean deviation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Xylitol bioproduction from lignocellulosic residues comprises hydrolysis of the hemicellulose, detoxification of the hydrolysate, bioconversion of the xylose, and recovery of xylitol from the fermented hydrolysate. There are relatively few reports on xylitol recovery from fermented media. In the present study, ion-exchange resins were used to clarify a fermented wheat straw hemicellulosic hydrolysate, which was then vacuum-concentrated and submitted to cooling in the presence of ethanol for xylitol crystallization. RESULTS: Sequential adsorption into two anion-exchange resins (A-860S and A-500PS) promoted considerable reductions in the content of soluble by-products (up to 97.5%) and in medium coloration (99.5%). Vacuum concentration led to a dark-colored viscous solution that inhibited xylitol crystallization. This inhibition could be overcome by mixing the concentrated medium with a commercial xylitol solution. Such a strategy led to xylitol crystals with up to 95.9% purity. The crystallization yield (43.5%) was close to that observed when using commercial xylitol solution (51.4%). CONCLUSION: The experimental data demonstrate the feasibility of using ion-exchange resins followed by cooling in the presence of ethanol as a strategy to promote the fast recovery and purification of xylitol from hemicellulose-derived fermentation media. (c) 2008 Society of Chemical Industry.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
P>The aim of the present work was to evaluate the use of the kefir grains as a starter culture for tradicional milk kefir beverage and for cheese whey-based beverages production. Fermentation was performed by inoculating kefir grains in milk (ML), cheese whey (CW) and deproteinised cheese whey (DCW). Erlenmeyers containing kefir grains and different substrates were statically incubated for 72 h at 25 degrees C. Lactose, ethanol, lactic acid, acetic acid, acetaldehyde, ethyl acetate, isoamyl alcohol, isobutanol, 1-propanol, isopentyl alcohol and 1-hexanol were identified and quantified by high-performance liquid chromatography and GC-FID. The results showed that kefir grains were able to utilise lactose in 60 h from ML and 72 h from CW and DCW and produce similar amounts of ethanol (similar to 12 g L-1), lactic acid (similar to 6 g L-1) and acetic acid (similar to 1.5 g L-1) to those obtained during milk fermentation. Based on the chemical characteristics and acceptance in the sensory analysis, the kefir grains showed potential to be used for developing cheese whey-based beverages.
Resumo:
Enzyme production is a growing field in biotechnology and increasing attention has been devoted to the solid-state fermentation (SSF) of lignocellulosic biomass for production of industrially relevant lignocellulose deconstruction enzymes, especially manganese-peroxidase (MnP), which plays a crucial role in lignin degradation. However, there is a scarcity of studies regarding extraction of the secreted metabolities that are commonly bound to the fermented solids, preventing their accurate detection and limiting recovery efficiency. In the present work, we assessed the effectiveness of extraction process variables (pH, stirring rate, temperature, and extraction time) on recovery efficiency of manganese-peroxidase (MnP) obtained by SSF of eucalyptus residues using Lentinula edodes using statistical design of experiments. The results from this study indicated that of the variables studied, pH was the most significant (p < 0.05%) parameter affecting MnP recovery yield, while temperature, extraction time, and stirring rate presented no statistically significant effects in the studied range. The optimum pH for extraction of MnP was at 4.0-5.0, which yielded 1500-1700 IU kg (1) of enzyme activity at extraction time 4-5 h, under static condition at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with kappa-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HA(app)) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g(-1) of gel for GLU, 7.76 mg g(-1) of gel for GLY, and 7.65 mg g(-1) of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g(-1) of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.
Resumo:
BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.
Resumo:
An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.