887 resultados para brush machine
Resumo:
Two business cards for Singer Sewing Machine Co. Incorporated located at 269 St. Paul Street, St. Catharines. One card has the name of a representative for the company, ? Cowan.
Resumo:
Letter to S.D. Woodruff from Brush Brothers of Buffalo, New York. This letter accompanied the bill for bricks and cartage, May 28, 1875.
Resumo:
Letter from Brush Brothers of Buffalo, New York for delivery of bricks and request for remittance. This was signed in receipt of materials by S.D. Woodruff on Sept. 10, 1874, Sept. 8, 1875.
Resumo:
Letter to S.D. Woodruff that bricks have been sent by Brush Brothers of Buffalo, New York, Sept. 28, 1875.
Resumo:
Receipt from Brush Brothers of Buffalo, N.Y. for brick, Oct. 26, 1875.
Resumo:
Certificate of post office registration to Brush Brothers of Buffalo, New York, Oct. 11, 1875.
Resumo:
Receipt from W.H. Eckhardt, Star Music Store, St. Catharines for rent of machine, Feb. 1, 1888.
Resumo:
Province of Ontario Patent issued to Cyrus Dean of St. Catharines for a machine for effecting more perfect combustion of fuel in the furnaces of locomotives. This patent was listed in the Records Office of the Registrar General of Canada in Lib. JE, folio 361. This patent is accompanied by a 36 cm. x 57 cm. detailed sketch and explanation of the machine. [Samuel D. Woodruff was the assignee of Cyrus Dean in a in a patent for a rotary washing machine in November of 1869 according to The Commissioners of Patents' Journal by the Great Britain Patent Office], March 23, 1870.
Resumo:
We introduce a procedure to infer the repeated-game strategies that generate actions in experimental choice data. We apply the technique to set of experiments where human subjects play a repeated Prisoner's Dilemma. The technique suggests that two types of strategies underly the data.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Dans ce travail, nous explorons la faisabilité de doter les machines de la capacité de prédire, dans un contexte d'interaction homme-machine (IHM), l'émotion d'un utilisateur, ainsi que son intensité, de manière instantanée pour une grande variété de situations. Plus spécifiquement, une application a été développée, appelée machine émotionnelle, capable de «comprendre» la signification d'une situation en se basant sur le modèle théorique d'évaluation de l'émotion Ortony, Clore et Collins (OCC). Cette machine est apte, également, à prédire les réactions émotionnelles des utilisateurs, en combinant des versions améliorées des k plus proches voisins et des réseaux de neurones. Une procédure empirique a été réalisée pour l'acquisition des données. Ces dernières ont fourni une connaissance consistante aux algorithmes d'apprentissage choisis et ont permis de tester la performance de la machine. Les résultats obtenus montrent que la machine émotionnelle proposée est capable de produire de bonnes prédictions. Une telle réalisation pourrait encourager son utilisation future dans des domaines exploitant la reconnaissance automatique de l'émotion.