970 resultados para brain-computer interfaces
Resumo:
The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.
Resumo:
This paper presents two studies, both examining the efficacy of a computer programme (Captain's Log) in training attentional skills. The population of interest is the traumatically brain injured. Study #1 is a single-case design that offers recommendations for the second, .larger (N=5) inquiry. Study #2 is an eight-week hierarchical treatment programme with a multi-based testing component. Attention, memory, listening comprehension, locus-of-control, self-esteem, visuo-spatial, and general outcome measures are employed within the testing schedule. Results suggest that any improvement was a result of practice effects. With a few single-case exceptions, the participants showed little improvement in the dependent measures.
Resumo:
Individuals who have sustained a traumatic brain injury (TBI) often complain of t roubl e sleeping and daytime fatigue but little is known about the neurophysiological underpinnings of the s e sleep difficulties. The fragile sleep of thos e with a TBI was predicted to be characterized by impairments in gating, hyperarousal and a breakdown in sleep homeostatic mechanisms. To test these hypotheses, 20 individuals with a TBI (18- 64 years old, 10 men) and 20 age-matched controls (18-61 years old, 9 men) took part in a comprehensive investigation of their sleep. While TBI participants were not recruited based on sleep complaint, the fmal sample was comprised of individuals with a variety of sleep complaints, across a range of injury severities. Rigorous screening procedures were used to reduce potential confounds (e.g., medication). Sleep and waking data were recorded with a 20-channel montage on three consecutive nights. Results showed dysregulation in sleep/wake mechanisms. The sleep of individuals with a TBI was less efficient than that of controls, as measured by sleep architecture variables. There was a clear breakdown in both spontaneous and evoked K-complexes in those with a TBI. Greater injury severities were associated with reductions in spindle density, though sleep spindles in slow wave sleep were longer for individuals with TBI than controls. Quantitative EEG revealed an impairment in sleep homeostatic mechanisms during sleep in the TBI group. As well, results showed the presence of hyper arousal based on quantitative EEG during sleep. In wakefulness, quantitative EEG showed a clear dissociation in arousal level between TBls with complaints of insomnia and TBls with daytime fatigue. In addition, ERPs indicated that the experience of hyper arousal in persons with a TBI was supported by neural evidence, particularly in wakefulness and Stage 2 sleep, and especially for those with insomnia symptoms. ERPs during sleep suggested that individuals with a TBI experienced impairments in information processing and sensory gating. Whereas neuropsychological testing and subjective data confirmed predicted deficits in the waking function of those with a TBI, particularly for those with more severe injuries, there were few group differences on laboratory computer-based tasks. Finally, the use of correlation analyses confirmed distinct sleep-wake relationships for each group. In sum, the mechanisms contributing to sleep disruption in TBI are particular to this condition, and unique neurobiological mechanisms predict the experience of insomnia versus daytime fatigue following a TBI. An understanding of how sleep becomes disrupted after a TBI is important to directing future research and neurorehabilitation.
Resumo:
Le succès commercial des jeux vidéo nous montre qu’ils sont devenus une alternative non négligeable en matière de loisir et de divertissement. En observant les tendances, on constate que les concepteurs de jeux vidéo cherchent à transposer ou adapter les loisirs comme la danse, l’interprétation de la musique ou la pratique d’un sport dans le contexte de jeux vidéo (l’univers virtuel) et ceci est devenu encore plus évident depuis l’apparition des nouvelles technologies intégrant le mouvement comme mode d'interaction. En rapport aux activités dont les jeux vidéo s’inspirent, ces tendances entraînent des changements considérables sur l’aspect formel de l’activité ludique et notamment l’interaction. Dans le cas particulier du tennis de table, ou ping-pong dans le langage courant, il semble y avoir des différences en terme de plaisir lors de la pratique de ce loisir de façon traditionnelle ou en mode virtuel dans ses différentes adaptations. Le but de cette recherche est de mettre en évidence les différences entre l’appréciation de l’interaction avec le contrôleur multifonctionnel Wiimote et une raquette traditionnelle de ping-pong et de découvrir les implications sur l’expérience du plaisir de la transposition du jeu ping-pong traditionnel comparé aux adaptations sur la console Wii. Ainsi, en regard du CLASSIC GAME MODEL de Juul (2005) et du modèle THE FOUR FUN KEYS de Lazzaro (2008) nous comparons les deux modes d’interaction, jeu traditionnel avec le jeu virtuel, sur le plan formel du jeu et sur les dimensions du plaisir que chacun procure. Les résultats obtenus par l’observation des tests de jeu et l’entremise des autres outils permettent de souligner le rôle déterminant des interfaces dans l’engagement des joueurs et de montrer les limites des interfaces digitales par rapport à celle des jeux traditionnels.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Retrieval of similar anatomical structures of brain MR images across patients would help the expert in diagnosis of diseases. In this paper, modified local binary pattern with ternary encoding called modified local ternary pattern (MOD-LTP) is introduced, which is more discriminant and less sensitive to noise in near-uniform regions, to locate slices belonging to the same level from the brain MR image database. The ternary encoding depends on a threshold, which is a user-specified one or calculated locally, based on the variance of the pixel intensities in each window. The variancebased local threshold makes the MOD-LTP more robust to noise and global illumination changes. The retrieval performance is shown to improve by taking region-based moment features of MODLTP and iteratively reweighting the moment features of MOD-LTP based on the user’s feedback. The average rank obtained using iterated and weighted moment features of MOD-LTP with a local variance-based threshold, is one to two times better than rotational invariant LBP (Unay, D., Ekin, A. and Jasinschi, R.S. (2010) Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Technol. Biomed., 14, 897–903.) in retrieving the first 10 relevant images
Resumo:
Segmentation of medical imagery is a challenging problem due to the complexity of the images, as well as to the absence of models of the anatomy that fully capture the possible deformations in each structure. Brain tissue is a particularly complex structure, and its segmentation is an important step for studies in temporal change detection of morphology, as well as for 3D visualization in surgical planning. In this paper, we present a method for segmentation of brain tissue from magnetic resonance images that is a combination of three existing techniques from the Computer Vision literature: EM segmentation, binary morphology, and active contour models. Each of these techniques has been customized for the problem of brain tissue segmentation in a way that the resultant method is more robust than its components. Finally, we present the results of a parallel implementation of this method on IBM's supercomputer Power Visualization System for a database of 20 brain scans each with 256x256x124 voxels and validate those against segmentations generated by neuroanatomy experts.
Resumo:
We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots.
Resumo:
BCI systems require correct classification of signals interpreted from the brain for useful operation. To this end this paper investigates a method proposed in [1] to correctly classify a series of images presented to a group of subjects in [2]. We show that it is possible to use the proposed methods to correctly recognise the original stimuli presented to a subject from analysis of their EEG. Additionally we use a verification set to show that the trained classification method can be applied to a different set of data. We go on to investigate the issue of invariance in EEG signals. That is, the brain representation of similar stimuli is recognisable across different subjects. Finally we consider the usefulness of the methods investigated towards an improved BCI system and discuss how it could potentially lead to great improvements in the ease of use for the end user by offering an alternative, more intuitive control based mode of operation.
Resumo:
“Point and click” interactions remain one of the key features of graphical user interfaces (GUIs). People with motion-impairments, however, can often have difficulty with accurate control of standard pointing devices. This paper discusses work that aims to reveal the nature of these difficulties through analyses that consider the cursor’s path of movement. A range of cursor measures was applied, and a number of them were found to be significant in capturing the differences between able-bodied users and motion-impaired users, as well as the differences between a haptic force feedback condition and a control condition. The cursor measures found in the literature, however, do not make up a comprehensive list, but provide a starting point for analysing cursor movements more completely. Six new cursor characteristics for motion-impaired users are introduced to capture aspects of cursor movement different from those already proposed.
Resumo:
We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.
Resumo:
Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in the regulation of neuronal firing patterns in remote circuits by the CNS.