804 resultados para basic life support (BLS)
Resumo:
Introduction: Resilience is a core variable in the context of studies on the psychosocial adjustment and school children and teenagers, and should be considered in the context of strategies to promote their well- being and quality of life. Objectives: To know the relationship between resilience, parental support and some sociodemographic variables; outline socio-educational intervention strategies in contexts of children’s lives. Methods: This is a non-experimental, correlational and cross-sectional study, having used a non- probabilistic convenience sample consisting of 150 children, aged between 10 and 16 years old, attending the 2nd and 3rd cycles of Basic Education. The gathering instruments were the Sociodemographic Questionnaire, Inventory Measuring State and Child Resilience (Martins, 2005) and Perception Parental Support Scale (Veiga, 2011). Results: Results show that there are signiicant differences in the values of the current, past and overall resilience, between the age groups children, revealing that children aged between 10 and 11 years have higher results in resilience than young people aged between 14 and 16 years. We also observed signiicant differences in the current resilience, depending on the parents’ marital status (higher when parents are married). We also observed positive and signiicant correlations between resilience and perception of parental support. Conclusions: Results are in line with the scientiic literature in the ield that highlights the key role of resilience in school and psychosocial adjustment of children, and should be considered within the design of socio-educational intervention strategies. Keywords: Resilience. Parental support. Attachment
Resumo:
Educational services are essential to social and economical development of people, mainly to the progress of all sectors of society. Establishing actions that can promote the participation of various social groups is essential to improve their quality of life and building more respectful and fair human rights without any discrimination or exclusion. In recent years, the Costa Rican education system has undergone significant changes due to the pedagogical approach of inclusive education in which students with educational needs may require different support and specialized resources for training and development. For this, the Basic Educational Division of the Center for Teaching and Research in Education, generated a concern of investigating the participation of the Committee of Educational Support in the process of educational integration, thus, determine the functions performed in the educational context, under the rules of the 7600 Equal Opportunity Act for people with disabilities, which is the entity that corresponds to regulate access to education by identifying the support required for students with educational needs and, advice and trains, administrative staff in schools both public and private in the country. In addition, there is also a concern for exploring the role of the Special Education teacher for this Committee, as well as learning the perceptions of teachers and parents about the functions performed by the committee.
Resumo:
This paper reports on a study of ERP lifecycle major issues from the perspectives of individuals with substantial and diverse involvement with SAP Financials in Queensland Government. A survey was conducted of 117 ERP system project participants in five closely related state government agencies. A modified Delphi technique identified, rationalized and weighed perceived major issues in ongoing ERP life cycle implementation, management and support. The five agencies each implemented SAP Financials simultaneously using a common implementation partner. The three survey rounds of the Delphi technique, together with coding and synthesizing procedures, resulted in a set of 10 major issue categories with 38 sub-issues. Relative scores of issue importance are compared across government agencies, roles (client vs implementation partner) and organizational levels (strategic, technical and operational). Study findings confirm the importance of this finer partitioning of the data, and distinctions identified reflect the circumstances of ERP lifecycle implementation, management and support among the stakeholder groups. The study findings should also be of interest to stakeholders who seek to better understand the issues surrounding ERP systems and to better realise the benefits of ERP.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The construction industry is categorised as being an information-intensive industry and described as one of the most important industries in any developed country, facing a period of rapid and unparalleled change (Industry Science Resources 1999) (Love P.E.D., Tucker S.N. et al. 1996). Project communications are becoming increasingly complex, with a growing need and fundamental drive to collaborate electronically at project level and beyond (Olesen K. and Myers M.D. 1999; Thorpe T. and Mead S. 2001; CITE 2003). Yet, the industry is also identified as having a considerable lack of knowledge and awareness about innovative information and communication technology (ICT) and web-based communication processes, systems and solutions which may prove beneficial in the procurement, delivery and life cycle of projects (NSW Government 1998; Kajewski S. and Weippert A. 2000). The Internet has debatably revolutionised the way in which information is stored, exchanged and viewed, opening new avenues for business, which only a decade ago were deemed almost inconceivable (DCITA 1998; IIB 2002). In an attempt to put these ‘new avenues of business’ into perspective, this report provides an overall ‘snapshot’ of current public and private construction industry sector opportunities and practices in the implementation and application of web-based ICT tools, systems and processes (e-Uptake). Research found that even with a reserved uptake, the construction industry and its participating organisations are making concerted efforts (fortunately with positive results) in taking up innovative forms of doing business via the internet, including e-Tendering (making it possible to manage the entire tender letting process electronically and online) (Anumba C.J. and Ruikar K. 2002; ITCBP 2003). Furthermore, Government (often a key client within the construction industry),and with its increased tendency to transact its business electronically, undoubtedly has an effect on how various private industry consultants, contractors, suppliers, etc. do business (Murray M. 2003) – by offering a wide range of (current and anticipated) e-facilities / services, including e-Tendering (Ecommerce 2002). Overall, doing business electronically is found to have a profound impact on the way today’s construction businesses operate - streamlining existing processes, with the growth in innovative tools, such as e-Tender, offering the construction industry new responsibilities and opportunities for all parties involved (ITCBP 2003). It is therefore important that these opportunities should be accessible to as many construction industry businesses as possible (The Construction Confederation 2001). Historically, there is a considerable exchange of information between various parties during a tendering process, where accuracy and efficiency of documentation is critical. Traditionally this process is either paper-based (involving large volumes of supporting tender documentation), or via a number of stand-alone, non-compatible computer systems, usually costly to both the client and contractor. As such, having a standard electronic exchange format that allows all parties involved in an electronic tender process to access one system only via the Internet, saves both time and money, eliminates transcription errors and increases speed of bid analysis (The Construction Confederation 2001). Supporting this research project’s aims and objectives, researchers set to determine today’s construction industry ‘current state-of-play’ in relation to e-Tendering opportunities. The report also provides brief introductions to several Australian and International e-Tender systems identified during this investigation. e-Tendering, in its simplest form, is described as the electronic publishing, communicating, accessing, receiving and submitting of all tender related information and documentation via the internet, thereby replacing the traditional paper-based tender processes, and achieving a more efficient and effective business process for all parties involved (NT Governement 2000; NT Government 2000; NSW Department of Commerce 2003; NSW Government 2003). Although most of the e-Tender websites investigated at the time, maintain their tendering processes and capabilities are ‘electronic’, research shows these ‘eTendering’ systems vary from being reasonably advanced to more ‘basic’ electronic tender notification and archiving services for various industry sectors. Research also indicates an e-Tender system should have a number of basic features and capabilities, including: • All tender documentation to be distributed via a secure web-based tender system – thereby avoiding the need for collating paperwork and couriers. • The client/purchaser should be able to upload a notice and/or invitation to tender onto the system. • Notification is sent out electronically (usually via email) for suppliers to download the information and return their responses electronically (online). • During the tender period, updates and queries are exchanged through the same e-Tender system. • The client/purchaser should only be able to access the tenders after the deadline has passed. • All tender related information is held in a central database, which should be easily searchable and fully audited, with all activities recorded. • It is essential that tender documents are not read or submitted by unauthorised parties. • Users of the e-Tender system are to be properly identified and registered via controlled access. In simple terms, security has to be as good as if not better than a manual tender process. Data is to be encrypted and users authenticated by means such as digital signatures, electronic certificates or smartcards. • All parties must be assured that no 'undetected' alterations can be made to any tender. • The tenderer should be able to amend the bid right up to the deadline – whilst the client/purchaser cannot obtain access until the submission deadline has passed. • The e-Tender system may also include features such as a database of service providers with spreadsheet-based pricing schedules, which can make it easier for a potential tenderer to electronically prepare and analyse a tender. Research indicates the efficiency of an e-Tender process is well supported internationally, with a significant number, yet similar, e-Tender benefits identified during this investigation. Both construction industry and Government participants generally agree that the implementation of an automated e-Tendering process or system enhances the overall quality, timeliness and cost-effectiveness of a tender process, and provides a more streamlined method of receiving, managing, and submitting tender documents than the traditional paper-based process. On the other hand, whilst there are undoubtedly many more barriers challenging the successful implementation and adoption of an e-Tendering system or process, researchers have also identified a range of challenges and perceptions that seem to hinder the uptake of this innovative approach to tendering electronically. A central concern seems to be that of security - when industry organisations have to use the Internet for electronic information transfer. As a result, when it comes to e-Tendering, industry participants insist these innovative tendering systems are developed to ensure the utmost security and integrity. Finally, if Australian organisations continue to explore the competitive ‘dynamics’ of the construction industry, without realising the current and future, trends and benefits of adopting innovative processes, such as e-Tendering, it will limit their globalising opportunities to expand into overseas markets and allow the continuation of international firms successfully entering local markets. As such, researchers believe increased knowledge, awareness and successful implementation of innovative systems and processes raises great expectations regarding their contribution towards ‘stimulating’ the globalisation of electronic procurement activities, and improving overall business and project performances throughout the construction industry sectors and overall marketplace (NSW Government 2002; Harty C. 2003; Murray M. 2003; Pietroforte R. 2003). Achieving the successful integration of an innovative e-Tender solution with an existing / traditional process can be a complex, and if not done correctly, could lead to failure (Bourn J. 2002).
Resumo:
The report presents a methodology for whole of life cycle cost analysis of alternative treatment options for bridge structures, which require rehabilitation. The methodology has been developed after a review of current methods and establishing that a life cycle analysis based on a probabilistic risk approach has many advantages including the essential ability to consider variability of input parameters. The input parameters for the analysis are identified as initial cost, maintenance, monitoring and repair cost, user cost and failure cost. The methodology utilizes the advanced simulation technique of Monte Carlo simulation to combine a number of probability distributions to establish the distribution of whole of life cycle cost. In performing the simulation, the need for a powerful software package, which would work with spreadsheet program, has been identified. After exploring several products on the market, @RISK software has been selected for the simulation. In conclusion, the report presents a typical decision making scenario considering two alternative treatment options.
Resumo:
This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.
Resumo:
The project has further developed two programs for the industry partners related to service life prediction and salt deposition. The program for Queensland Department of Main Roads which predicts salt deposition on different bridge structures at any point in Queensland has been further refined by looking at more variables. It was found that the height of the bridge significantly affects the salt deposition levels only when very close to the coast. However the effect of natural cleaning of salt by rainfall was incorporated into the program. The user interface allows selection of a location in Queensland, followed by a bridge component. The program then predicts the annual salt deposition rate and rates the likely severity of the environment. The service life prediction program for the Queensland Department of Public Works has been expanded to include 10 common building components, in a variety of environments. Data mining procedures have been used to develop the program and increase the usefulness of the application. A Query Based Learning System (QBLS) has been developed which is based on a data-centric model with extensions to provide support for user interaction. The program is based on number of sources of information about the service life of building components. These include the Delphi survey, the CSIRO Holistic model and a school survey. During the project, the Holistic model was modified for each building component and databases generated for the locations of all Queensland schools. Experiments were carried out to verify and provide parameters for the modelling. These included instrumentation of a downpipe, measurements on pH and chloride levels in leaf litter, EIS measurements and chromate leaching from Colorbond materials and dose tests to measure corrosion rates of new materials. A further database was also generated for inclusion in the program through a large school survey. Over 30 schools in a range of environments from tropical coastal to temperate inland were visited and the condition of the building components rated on a scale of 0-5. The data was analysed and used to calculate an average service life for each component/material combination in the environments, where sufficient examples were available.
Resumo:
Our social life is characterised by norms that manifest as attitudinal and behavioural uniformities among people. With greater awareness about our social context, we can interact more efficiently. Any theory or account of human interaction that fails to include social concepts could be suggested to lack a critical element. This paper identifies social concepts that need to be supported by future context-aware systems. It discusses the limitations of existing context-aware and Multi-Agent Systems (MAS) to support social psychology theories related to the identification and membership of social groups. We argue thatsocial norms are among the core modeling concepts that future context-aware systems need to capture with the view to support and enhance social interactions. The social concepts identified in this paper could be used to simulate agent interactions imbued with social norms or use ICT to facilitate, assist or enhance social interactions. They also could be used in virtual communities modeling where the awareness of a community as well as the process of joining and exiting a community are important.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.
Resumo:
Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.
Resumo:
Decision Support System (DSS) has played a significant role in construction project management. This has been proven that a lot of DSS systems have been implemented throughout the whole construction project life cycle. However, most research only concentrated in model development and left few fundamental aspects in Information System development. As a result, the output of researches are complicated to be adopted by lay person particularly those whom come from a non-technical background. Hence, a DSS should hide the abstraction and complexity of DSS models by providing a more useful system which incorporated user oriented system. To demonstrate a desirable architecture of DSS particularly in public sector planning, we aim to propose a generic DSS framework for consultant selection. It will focus on the engagement of engineering consultant for irrigation and drainage infrastructure. The DSS framework comprise from operational decision to strategic decision level. The expected result of the research will provide a robust framework of DSS for consultant selection. In addition, the paper also discussed other issues that related to the existing DSS framework by integrating enabling technologies from computing. This paper is based on the preliminary case study conducted via literature review and archival documents at Department of Irrigation and Drainage (DID) Malaysia. The paper will directly affect to the enhancement of consultant pre-qualification assessment and selection tools. By the introduction of DSS in this area, the selection process will be more efficient in time, intuitively aided qualitative judgment, and transparent decision through aggregation of decision among stakeholders.