934 resultados para aggregation behaviour
Resumo:
Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(Bu2Sn)-Bu-n{C5H9C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH center dot center dot center dot O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(Bu2Sn)-Bu-n(HL)(2)] [HL=C3H5C(O)NHO (1a), C6H11C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R2Sn(C5H9C(O)NHO)(2)] [R=Bu-n (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R = Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with Sn-O and Sn-C ruptures, whereas for the alkyl (R=Bu-n) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with Sn-O bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn-II species with the cis geometry, features that can be of biological significance.
Resumo:
The integration of large amounts of wind energy in power systems raises important operation issues such as the balance between power demand and generation. The pumped storage hydro (PSH) units are seen as one solution for this issue, avoiding the need for wind power curtailments. However, the behavior of a PSH unit might differ considerably when it operates in a liberalized market with some degree of market power. In this regard, a new approach for the optimal daily scheduling of a PSH unit in the day-ahead electricity market was developed and presented in this paper, in which the market power is modeled by a residual inverse demand function with a variable elasticity. The results obtained show that increasing degrees of market power of the PSH unit correspond to decreasing levels of storage and, therefore, the capacity to integrate wind power is considerably reduced under these circumstances.
Resumo:
Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2–CH4 and H2–CH4–N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 m. A micro-abrasion tribometer was used, with 3 m diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25–0.75 N. The wear rate for MPCVD NCD (3.7±0.8 × 10−5 m3N−1m−1) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure.
Resumo:
The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.
Resumo:
Sera of persons of different age groups collected in 1976, 1978 and 1979 were tested for the presence of HI antibodies against various strains of the H3N2 and H1N1 subtypes of influenza virus. The occurrence of infection by H3N2 subtype was recorded during the 1976-1978 period but in 1979, circulation of this subtype of virus was limited. The prevalence of antibody against A/São Paulo/1/78 (H1N1) was significantly higher than that of antibody to A/USSB/90/77 (HIND in 1978. However in 1979 the predominant strain was A/USSR/90/77 (HIND. Persons under 20 years of age were the most affected by H1N1 subtype. Antibodies to H1N1 subtype were detected in sera of individuals older than 20 years in 1976, before the re-emergence of this strain. Serological results indicate that infections by H3N2 subtype in 1978 occurred in 65.4% of young children (0-4 year group). About 47.0% of children from the 0-4 year group had antibodies to H1N1 subtype in 1979. Antibodies to swine influenza virus were detected in 60% of 60+ year old people.
Resumo:
Hamster inoculated intraperitoneally with 1 x 10(7) parasites of L. donovani and L. major-like of the New World were studied in groups of 15, 30, 60 and 90 days of infection. The parasite load and density showed progressive increase with the evolution of the infection and was higher in the L. donovani groups than in the L. major-like groups. The L. major-like groups showed parasite density higher in the spleen than in the liver and was similar in both organs in L. donovani groups. The histopathology showed a diffuse marked hyperplasia and hypertrophy of the reticuloendothelial system with high parasitism in the L. donovani groups while there was focal involvement of these organs in L. major-like groups, forming nodules of macrophages that were scantly parasitised. The biological behaviour could be useful in the preliminary studies of Leishmania strain in regional laboratories and understanding the histopathology of lesions caused by different leishmania species.
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
This paper evaluates the influence of two superplasticizers (SP) on the rheological behaviour of concrete made with fine recycled concrete aggregates (FRCA). Three families of concrete were tested: family CO made without SP, family Cl made with a regular superplasticizer and family C2 made with a high-performance superplasticizer. Five replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. The coarse aggregates were natural gravels. Three criteria were established to design the concrete mixes' composition: keep the same particle size distribution curves, adjust the water/cement ratio to obtain a similar slump and no pre-saturation of the FRCA. All mixes had the same cement and SP content. The results show that the incorporation of FRCA significantly increased the shrinkage and creep deformation. The FRCA's effect was influenced by the curing age. The reference concrete made with natural sand stabilizes the creep deformation faster than the mixes made with FRCA. The incorporation of superplasticizer increased the shrinkage at early ages and decreased the shrinkage at 91 days of age. The regular superplasticizer did not improve the creep deformation while the high-performance superplasticizer highly improved this property. The incorporation of FRCA jeopardized the SP's effectiveness. This study demonstrated that to use FRCA and superplasticizer for concrete production it is necessary to take into account the different rheological behaviour of these mixes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
Resumo:
Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Copper iron (Cu-Fe) 3D porous foams for supercapacitor electrodes were electrodeposited in the cathodic regime, on stainless steel current collectors, using hydrogen bubbling dynamic template. The foams were prepared at different current densities and deposition times. The foams were submitted to thermal conditioning at temperatures of 150 and 250 degrees C. The morphology, composition and structure of the formed films were studied by SEM, EDS and XRD, respectively. The electrochemical behaviour was studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. The morphology of the 3D Cu-Fe foams is sensitive to the electrodeposition current and time. The increase of the current density produces a denser, larger and more ramified dendritic structure. Thermal conditioning at high temperature induces a coarser grain structure and the formation of copper oxides, which affect the electrochemical behaviour. The electrochemical response reveals the presence of various redox peaks assigned to the oxidation and reduction of Cu and Fe oxides and hydroxides in the foams. The specific capacitance of the 3D Cu Fe foams was significantly enhanced by thermal conditioning at 150 degrees C. The highest specific capacitance values attained 297 Fg(-1) which are much above the ones typically observed for single Cu or Fe Oxides and hydroxides. These values highlight a synergistic behaviour resulting from the combination of Cu and Fe in the form of nanostructured metallic foams. Moreover, the capacitance retention observed in an 8000 charge/discharge cycling test was above 66%, stating the good performance of these materials and its enhanced electrochemical response as supercapacitor negative electrodes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
As e-learning gradually evolved many specialized and disparate systems appeared to fulfil the needs of teachers and students, such as repositories of learning objects, authoring tools, intelligent tutors and automatic evaluators. This heterogeneity raises interoperability issues giving the standardization of content an important role in e-learning. This article presents a survey on current e-learning content aggregation standards focusing on their internal organization and packaging. This study is part of an effort to choose the most suitable specifications and standards for an e-learning framework called Ensemble defined as a conceptual tool to organize a network of e-learning systems and services for domains with complex evaluation.
Resumo:
The concerns on metals in urban wastewater treatment plants (WWTPs) are mainly related to its contents in discharges to environment, namely in the final effluent and in the sludge produced. In the near future, more restrictive limits will be imposed to final effluents, due to the recent guidelines of the European Water Framework Directive (EUWFD). Concerning the sludge, at least seven metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) have been regulated in different countries, four of which were classified by EUWFD as priority substances and two of which were also classified as hazardous substances. Although WWTPs are not designed to remove metals, the study of metals behaviour in these systems is a crucial issue to develop predictive models that can help more effectively the regulation of pre-treatment requirements and contribute to optimize the systems to get more acceptable metal concentrations in its discharges. Relevant data have been published in the literature in recent decades concerning the occurrence/fate/behaviour of metals in WWTPs. However, the information is dispersed and not standardized in terms of parameters for comparing results. This work provides a critical review on this issue through a careful systematization, in tables and graphs, of the results reported in the literature, which allows its comparison and so its analysis, in order to conclude about the state of the art in this field. A summary of the main consensus, divergences and constraints found, as well as some recommendations, is presented as conclusions, aiming to contribute to a more concerted action of future research. © 2015, Islamic Azad University (IAU).
Resumo:
Dissertation presented to obtain the Ph.D. degree in Chemistry (Physical Chemistry) at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa