866 resultados para aderência aço-concreto
Resumo:
A utilização de varões de fibra de vidro (GFRP) em alternativa ao aço em estruturas de betão armado representa uma mais-valia no que respeita a ambientes agressivos, nomeadamente ambientes altamente corrosivos. No entanto a elevada flexibilidade e o comportamento elástico até à rotura levam a comportamentos distintos no que se refere ao seu dimensionamento. A sua aceitação no universo da construção está dependente de uma melhor compreensão do comportamento estrutural deste material. Desta forma a aderência constitui um dos aspetos mais básicos do comportamento estrutural, visto que representa a qualidade da transmissão de tensões das armaduras para o betão. Este parâmetro representa um fator determinante para o cálculo do comprimento de amarração nos códigos de dimensionamento. De acordo com o exposto, esta dissertação tem como objetivo o estudo do comportamento da aderência entre o betão e os varões GFRP. O programa experimental é constituído por dois tipos de ensaio, 18 ensaios de arrancamento com longo comprimento de ancoragem e 18 ensaios com curto comprimento de ancoragem, com intuito de avaliar a influência do diâmetro, do comprimento embebido e do material do varão no comportamento da aderência. Observou-se que as tensões desenvolvidas pelos varões GFRP, num ensaio de tração pura, diminuem consoante o diâmetro do varão aumenta. As tensões de aderência média diminuem com o aumento do comprimento embebido de varão. Os comprimentos de ancoragem ótimos dos varões GFRP aumentam consoante o aumento do diâmetro do varão, no entanto este valor representa cerca de 27 diâmetros do varão em causa. A nível local, verificou-se que as tensões de aderência aumentam conforme o aumento do diâmetro e que as tensões de aderência observadas nos varões GFRP são inferiores aquelas registadas nos varões de aço. Os resultados demonstraram que o confinamento dos provetes é um fator determinante no desenvolvimento de elevadas tensões, principalmente nos varões GFRP de maiores diâmetros, este fator deverá ser tido em conta em trabalhos experimentais futuros.
Resumo:
Este estudo pleiteia a discussão acerca do conhecimento concreto da criança que aprende com mais autonômia, como ferramenta indispensável para construir práticas pedagógicas inovadoras, tendo o docente como seu mediador. No intuito de compreender a inovação pedagógica o locus pesquisado foi o Grupo Escolar Luís Viana Filho localizada no município de Ibirapitanga - Bahia - Brasil, na tentativa de compreender os saberes e as práxis utilizadas como valorização do saber científico. Trata-se de uma pesquisa etnográfica, na qual se compreende a criança e o docente como sujeitos protagonistas do processo de construção efetiva de saberes, percebendo a importância da escola como um dos ambientes propiciadores da construção de aprendizagens. Os resultados permitiram refletir acerca da postura tanto dos alunos quanto do professor no desenvolvimento do cotidiano da sala de aula, valorizando os diversos ambientes sociais como espaços de aprendizagens e priorizando a atuação da criança como desveladora de seus próprios saberes.
Resumo:
Population growth experienced in major cities, allied to society s need of infra-structure, especially ones related to habitational demands, increases the consumption of construction materials. As a consequence, consumption of natural resources itself. Thus, due to this process, concrete is one of the most produced materials in civil construction. This is also due to the great diversity of its application, easiness in its execution and adequate mechanical performance, as well as low production costs. Following the same tendencies in construction development, the ceramic industry has intensified the production of porcelain ceramic tiles and floors. These are achieved by a fine finishing and receive polishing at the end of the fabrication process. This work researched the use of porcelain residues in polishing for the production of concrete. All of which; due to economical and environmental issues. This process aims to prove adequate destiny for this type of residue, due to environmental issues, incorporating it to the concrete itself; all of which provides economy in consumption of the materials that constitute concrete. Thus, the main characteristics of concrete were investigated through the inclusion of different concentration of the porcelain residue as additional trait element. The residue rates incorporated to the trait varied from 10% to 50% in relation to the cement mass, in the traits with plastic additives and without plastic additives. It is observed that the inclusion of porcelain residue produced a meaningful alteration in the consistency of fresh concrete. This residue has a fine granulometry and it considerably absorbed the water used in the concrete spreading, influencing the way this material is dealt with. Thus, the value of cement striking decreases with the increase of residues present in trait. The maximal incorporation of the residue was of 50%, massively, for the same factor water/initial cement. The use of residues in concrete results in an 40% increase in the compression resistance. It is also proportional to residue concentration of porcelain in the trait. The microstructure was also favored once porosity and concrete absorption decreases with the use of this residue. The parameters demonstrate the quality and durability of the concrete produced with this residue. The use of porcelain residue in concrete composition has not produced meaningful thermal behavior changes. Thermal conductivity, heat capacity and thermal diffusivity have been maintained basically constant
Resumo:
The corrosive phenomenon on reinforced concrete structures is one of the most founded pathologies on the coastal area. With the objective to prevent the process development, or even, retard its beginning, it was studied the application of inorganic covering over concrete surfaces, after its cure, as well as, evaluate the efficiency of the covering applied on the concrete in reducing its porosity of concrete preventing the entrance of aggressive agents to preserve the integrity of the existing armor inside it, comparing the result obtained with the body-of-proof reference, that didn´t receive covering protection. On the concrete production it was used Portland Cement CP II 32, coarse aggregate, fine aggregate and water from the local distributive. Two types of covering were used, one resin based of silicon and solvent and other white cement based, selected sands and acrylic resin. The concrete mixture adopted was 1:1,5:2,5 (cement, fine aggregate, coarse aggregate) and 0.50 water/cement ratio. With the concrete on fresh state was made the experiment test to determinate the workability. On the hardened state was made the concrete resistance experiment, absorption of water and electrochemical experiments, through polarization curves. Also was held optical microscopy and Scanning Electron Microscopy experiments to analyze the layer of the covering applied to the concrete surface and the interface between the concrete and the layer. The obtained results shows that the covering applied to the concrete surface didn´t affect the resistance towards compression. On the absorption of water occurred a diminution of the percentage absorbed, improving the concrete development by making it more impermeable towards the entrance of aggressive agents. The electrochemical experiment results confirmed the water absorption results; the body-of-proof covered presented larger protection towards the development of corrosives process and retarded the evolution of the corrosive phenomenon
Resumo:
This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction
Resumo:
The sharp consumption of natural resources by the construction industry has motivated numerous studies concerning the application of waste to replace partially or fully, some materials, such as aggregates, thereby reducing the environmental impact caused by the extraction of sand and crushing process. The application of stone dust from crushing process arising as an aggregate for the production of Portland cement concrete is a viable alternative in view of the high cost of natural sands, in addition to the environmental damage which causes its operation to the environment. The stone dust has reduced cost compared to natural sand because it is produced in the beds of their own quarries, which are usually located close to major urban centers. This study examined the feasibility of using stone dust from the crushing of rock gneisses in the state of Bahia, replacing natural quartz sand. In the development of scientific study was conducted to characterize physical and chemical raw materials applied and molded cylindrical specimens , using as reference values Fck 20, Fck 25 and Fck 30 MPa ( resistance characteristic of the concrete after 28 days) in following compositions stone powder: 10%, 30%, 50 %, 100% and 100% with additive. The specimens were cured and subjected to the tests of compressive strength and water absorption, then the samples were subjected to the tests of X-ray diffraction and scanning electron microscopy. The results obtained showed that the composition with 10% stone powder showed the best results regarding the physical and mechanical tests performed, confirming the reduction in compressive strength and increased water uptake increased as the content of the powder stone in the concrete composition
Resumo:
The addition of active silica potentially improves the quality of concrete due to its high reactivity and pore refinement effect. The reactivity of silica is likely related to its charge density. Variations in surface charge alter the reactivity of the material consequently affecting the properties of concrete. The present study aimed at investigating variations in the charge density of silica as a function of acid treatments using nitric or phosphoric acid and different pH values (2.0, 4.0 and 6.0). Effects on concrete properties including slump, mechanical strength, permeability and chloride corrosion were evaluated. To that end, a statistical analysis was carried out and empirical models that correlate studied parameters (pH, acid and cement) with concrete properties were established. The quality of the models was tested by variance analysis. The results revealed that the addition of silica was efficiency in improving the properties of concrete, especially the electrochemical parameters. The addition of silica treated using nitric acid at pH = 4.0 displayed the best cement performance including highest strength, reduced permeability and lowest corrosion current