993 resultados para Y Receptor
Resumo:
The alpha-1 adrenergic receptors (alpha(1)ARs) are critical in sympathetically mediated vasoconstriction. The specific role of each alpha(1)AR subtype in regulating vasoconstriction remains highly controversial. Limited pharmacological studies suggest that differential alpha(1)AR responses may be the result of differential activation of junctional versus extrajunctional receptors. We tested the hypothesis that the alpha(1B)AR subtype is critical in mediating sympathetic junctional neurotransmission. We measured in vivo integrated cardiovascular responses to a hypotensive stimulus (induced via transient bilateral carotid occlusion [TBCO]) in alpha(1B)AR knockout (KO) mice and their wild-type (WT) littermates. In WT mice, after dissection of the carotid arteries and denervation of aortic baroreceptor buffering nerves, TBCO produced significant pressor and positive inotropic effects. Both responses were markedly attenuated in alpha(1B)AR KO mice (change systolic blood pressure 46+/-8 versus 11+/-2 mm Hg; percentage change in the end-systolic pressure-volume relationship [ESPVR] 36+/-7% versus 12+/-2%; WT versus KO; P<0.003). In vitro alpha(1)AR mesenteric microvascular contractile responses to endogenous norepinephrine (NE; elicited by electrical field stimulation 10 Hz) was markedly depressed in alpha(1B)AR KO mice compared with WT (12.4+/-1.7% versus 21.5+/-1.2%; P<0.001). In contrast, responses to exogenous NE were similar in alpha(1B)AR KO and WT mice (22.4+/-7.3% versus 33.4+/-4.3%; NS). Collectively, these results demonstrate a critical role for the alpha(1B)AR in baroreceptor-mediated adrenergic signaling at the vascular neuroeffector junction. Moreover, alpha(1B)ARs modulate inotropic responses to baroreceptor activation. The critical role for alpha(1B)AR in neuroeffector regulation of vascular tone and myocardial contractility has profound clinical implications for designing therapies for orthostatic intolerance.
Resumo:
Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.
Resumo:
Female-specific expression of the Xenopus laevis vitellogenin gene was reconstituted in vitro by addition of recombinant vaccinia-virus-produced estrogen receptor to nuclear extracts from male livers, in which this gene is silent. Transcription enhancement was at least 30 times and was selectively restricted to vitellogenin templates containing the estrogen-responsive unit. Thus, in male hepatocytes, estrogen receptor is the limiting regulatory factor that in the female liver controls efficient and accurate sex-specific expression of the vitellogenin gene. Furthermore, the Xenopus liver factor B, which is essential in addition to the estrogen receptor for the activation of this gene, was successfully replaced in the Xenopus extract by purified human nuclear factor I, identifying factor B of Xenopus as a functional homolog of this well-characterized human transcription factor.
Resumo:
FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned.
Resumo:
Au regard des agressions environnementales constantes que la peau doit endurer, l'équilibre fragile entre l'expression et la répression des gènes épidermiques, nécessaire à la différentiation et la prolifération des kératinocytes, pourrait facilement être perturbé en l'absence des mécanismes de stabilisation robustes. La présence d'un système neuroendocrinien local est donc importante afin de coordonner une réponse aux éventuelles irritations. En effet, l'expression de plusieurs neurohormones, des neurotransmetteurs et des neuropeptides, y compris des dérivés pro-opiomélanocortine comme la ß-endorphine et [Met5]-enképhaline, ainsi que l'expression du récepteur 8-opioïde (DOR) a été démontré dans la peau. Cependant, les mécanismes moléculaires par lesquels ils modulent la fonction des kératinocytes sont mal connus. Le présent travail démontre que la voie de signalisation DOR active spécifiquement la voie ERK 1/2 MAPK dans les lignées cellulaires de kératinocytes humains, inhibant la prolifération des cellules et entraîne une diminution de l'épaisseur épidermique dans un modèle organotypique de peau. De plus, l'expression de DOR retarde nettement l'induction de la kératine 10 (KRT 10) et la kératine 1 (KRT 1) dans une modèle 2D de différentiation in vitro, et supprime l'induction de KRT 10 dans un modèle organotypique de peau. Ceci est accompagné de la dérégulation de l'involucrine (IVL), la loricrine (LOR) et la fïlaggrin (FLG), résultant en une induction nettement réduite de leur expression lors de l'initiation de la différentiation in vitro. De plus, POU2F3 a été identifié comme un facteur de transcription régulant les gènes de différentiation des kératinocytes modulés par DOR. Il a été démontré que la régulation négative de POU2F3 via la voie DOR-ERK affecte les principaux aspects de la fonction des kératinocytes. Toutefois, il est évident que des facteurs supplémentaires influencent la fonctionnalité de la voie DOR elle-même. Le calcium et le contact cellule-cellule augmentent la quantité des récepteurs à la surface cellulaire des kératinocytes. Les kératinocytes dont les récepteurs sont internalisés ne répondent pas de la même manière que ceux possédant des récepteurs fonctionnels localisée à la membrane. Ce travail suggère que lors de signaux intrinsèques ou extrinsèques spécifiques, les kératinocytes sont capable de répondre via le système opioïdergique neuro-epidermique. Cette réponse doit être spatialement et temporairement contrôlée afin d'éviter un déséquilibre de l'homéostasie épidermique et un retard de cicatrisation. La compréhension de ce processus très complexe pourrait permettre à terme le développement de meilleurs traitements des affections cutanées pathologiques. En complément des études précédentes sur des souris DOR-défïcientes, ces données suggèrent que l'activation de DOR dans les kératinocytes humains influence la morphogenèse et l'homéostasie de l'épiderme, et pourrait jouer un rôle lors du processus de cicatrisation. - In view of the constant environmental assaults that the skin must endure, the delicate balance of an eloquent sequence of epidermal gene expression and repression, that is required for appropriate differentiation and proliferation of keratinocytes, might easily become derailed in the absence of robust stabilizing mechanisms. The presence of a local neuroendocrine system is thereby important to coordinate a response towards irritations. In fact, the expression of several neurohormones, neurotransmitters, and neuropeptides, including proopiomelanocortin derivatives, such as ß- endorphin and [Met5]-enkephalin has been shown in skin, as well as expression of the 6-opioid receptor (DOR). However, there is currently a lack of understanding of the molecular mechanisms by which their signalling modulates keratinocyte function. The present work demonstrates that DOR signalling specifically activates the ERK 1/2 MAPK pathway in human keratinocyte cell lines. This activation inhibits cell proliferation, resulting in decreased epidermal thickness in an organotypic skin model. Furthermore, DOR expression markedly delays induction of keratin intermediate filament Keratin 10 (KRT 10) and KRT 1 during in vitro differentiation, and abolishes the induction of KRT 10 in the organotypic skin model. This is accompanied by deregulation of involucrin (IVL), loricrin (LOR), and filaggrin (FLG), illustrated by a markedly reduced induction of their expression upon initiation of differentiation in vitro. Additionally, POU2F3 was identified as a transcription factor mediating the DOR induced regulation of keratinocyte differentiation related genes. It was revealed that DOR-mediated ERK-dependent downregulation of this factor affects key aspects of keratinocyte function. However, it is evident that additional triggers influence the functionality of the DOR itself. Calcium at concentrations above 0.1 mM and cell-cell contact both enhance the presence of receptor molecules on the keratinocytes cell surface. Keratinocytes with internalized receptor do not respond to DOR ligands in the same way as keratinocytes with a functional membrane localized receptor.
Resumo:
Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons.We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene.Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons.
Resumo:
Objective: To compare effects of a non-renin-angiotensin system (RAS) blocker, using a CCB, or a RAS blocker, using an ARB regimen on the arterial stiffness reduction in postmenopausal hypertensive women. Methods: In this prospective study, a total of 125 hypertensive women (age: 61.4_6 yrs; 98% Caucasian; BW: 71.9_14 kg; BMI: 27.3_5 kg/m2; SBP/ DBP: 158_11/92_9 mmHg) were randomized between ARB (valsartan 320mg_HCTZ) and CCB (amlodipine 10mg _ HCTZ). The primary outcome was carotid-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Results: There were no significant differences in baseline demographic data between the two groups. Both treatments effectively lowered BP at the end of the study with similar (p>0.05) reductions in the valsartan (_22.9/_10.9 mmHg) and amlodipine based (_25.2/_11.7 mmHg) treatment groups. Despite a lower (p<0.05 for DBP) central SBP/DBP in the CCB group (_19.2/_10.3 mmHg) compared to the valsartan group (_15.7/_7.6 mmHg) at week 38, a similar reduction in carotid-femoral PWV (_1.7 vs _1.9 m/sec; p>0.05) was observed between both groups. The numerically larger BP reduction observed in the CCB group was associated with a much higher incidence of peripheral edema (77% vs 14%) than the valsartan group. Conclusion: In summary, BP lowering in postmenopausal women led to a reduction in arterial stiffness assessed by PWV measurement. Both regimens reduced PWV at 38 weeks of treatment to a similar degree, despite differences in BP lowering suggesting that the effect of RAS blockade to influence PWV may partly be independent of BP.
Resumo:
Arginine-glycine-aspartic acid (RGD)-containing peptides have been traditionally used as PET probes to noninvasively image angiogenesis, but recently, small selective molecules for α5 β1 integrin receptor have been developed with promising results. Sixty-one antagonists were screened, and tert-butyl (S)-3-(2-((3R,5S)-1-(3-(1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)propanoyl)-5-((pyridin-2-ylamino)methyl)pyrrolidin-3-yloxy)acetamido)-2-(2,4,6-trimethylbenzamido)propanoate (FPMt) was selected for the development of a PET tracer to image the expression of α5 β1 integrin receptors. An alkynyl precursor (PMt) was initially synthesized in six steps, and its radiolabeling was performed according to the azide-alkyne copper(II)-catalyzed Huisgen's cycloaddition by using 1-azido-2-[(18)F]fluoroethane ([(18)F]12). Different reaction conditions between PMt and [(18)F]12 were investigated, but all of them afforded [(18)F]FPMt in 15 min with similar radiochemical yields (80-83%, decay corrected). Overall, the final radiopharmaceutical ([(18)F]FPMt) was obtained after a synthesis time of 60-70 min in 42-44% decay-corrected radiochemical yield.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.
Resumo:
MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.
Resumo:
The mode of action of nuclear receptors in living cells is an actively investigated field but much remains hypothetical due to the lack, until recently, of methods allowing the assessment of molecular mechanisms in vivo. However, these last years, the development of fluorescence microscopy methods has allowed initiating the dissection of the molecular mechanisms underlying gene regulation by nuclear receptors directly in living cells or organisms. Following our analyses on peroxisome proliferator activated receptors (PPARs) in living cells, we discuss here the different models arising from the use of these tools, that attempt to link mobility, DNA binding or chromatin interaction, and transcriptional activity.
Resumo:
G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.
Resumo:
When endogenous mouse mammary tumor virus (MMTV) superantigens (SAg) are expressed in the first weeks of life an efficient thymic deletion of T cells expressing MMTV SAg-reactive T cell receptor (TcR) V beta segments is observed. As most inbred mouse strains and wild mice contain integrated MMTV DNA, knowing the precise extent of MMTV influence on T cell development is required in order to study T cell immunobiology in the mouse. In this report, backcross breeding between BALB.D2 (Mtv-6, -7, -8 and -9) and 38CH (Mtv-) mice was carried out to obtain animals either lacking endogenous MMTV or containing a single MMTV locus, i.e. Mtv-6, -7, -8 or -9. The TcR V beta chain (TcR V beta) usage in these mice was analyzed using monoclonal antibodies specific for TcR V beta 2, V beta 3, V beta 4, V beta 5, V beta 6, V beta 7, V beta 8, V beta 11, V beta 12 and V beta 14 segments. Both Mtv-8+ mice and Mtv-9+ mice deleted TcR V beta 5+ and V beta 11+ T cells. Moreover, we also observed the deletion of TcR V beta 12+ cells by Mtv-8 and Mtv-9 products. Mtv-6+ and Mtv-7+ animals deleted TcR V beta 3+ and V beta 5+ cells, and TcR V beta 6+, V beta 7+ and V beta 8.1+ cells, respectively. Unexpectedly, TcR V beta 8.2+ cells were also deleted in some backcross mice expressing Mtv-7. TcR V beta 8.2 reactivity to Mtv-7 was shown to be brought by the 38CH strain and to result from an amino acid substitution (Asn-->Asp) in position 19 on the TcR V beta 8.2 fragment. Reactivities of BALB.D2 TcR V beta 8.2 and 38CH TcR V beta 8.2 to the exogenous infectious viruses, MMTV(SW) and MMTV(SHN), were compared. Finally, the observation of increased frequencies of TcR V beta 2+, V beta 4+ and V beta 8+ CD4+ T cell subsets in Mtv-8+ and Mtv-9+ mice, and TcR V beta 4+ CD4+ T cells in Mtv-6+ and Mtv-7+ mice, when compared with the T cell repertoire of Mtv- mice, is consistent with the possibility that MMTV products contribute to positive selection of T cells.
Resumo:
Using a sensitive immunohistochemical technique, the localization of neuropeptide Y (NPY) Y1-receptor (Y1R)-like immunoreactivity (LI) was studied in various peripheral tissues of rat. Wild-type (WT) and Y1R-knockout (KO) mice were also analyzed. Y1R-LI was found in small arteries and arterioles in many tissues, with particularly high levels in the thyroid and parathyroid glands. In the thyroid gland, Y1R-LI was seen in blood vessel walls lacking alpha-smooth muscle actin, i.e., perhaps in endothelial cells of capillaries. Larger arteries lacked detectable Y1R-LI. A distinct Y1R-immunoreactive (IR) reticulum was seen in the WT mouse spleen, but not in Y1R-KO mouse or rat. In the gastrointestinal tract, Y1R-positive neurons were observed in the myenteric plexus, and a few enteroendocrine cells were Y1R-IR. Some cells in islets of Langerhans in the pancreas were Y1R-positive, and double immunostaining showed coexistence with somatostatin in D-cells. In the urogenital tract, Y1R-LI was observed in the collecting tubule cells of the renal papillae and in some epithelial cells of the seminal vesicle. Some chromaffin cells of adrenal medulla were positive for Y1R. The problem of the specificity of the Y1R-LI is evaluated using adsorption tests as well as comparisons among rat, WT mouse, and mouse with deleted Y1R. Our findings support many earlier studies based on other methodologies, showing that Y1Rs on smooth muscle cells of blood vessels mediate NPY-induced vasoconstriction in various organs. In addition, Y1Rs in other cells in parenchymal tissues of several organs suggest nonvascular effects of NPY via the Y1R.
Resumo:
The ability of pollutants to affect human health is a major concern, justified by the wide demonstration that reproductive functions are altered by endocrine disrupting chemicals. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicology approaches have demonstrated that phthalate plasticizers can directly influence PPAR activity. What is now missing is a detailed molecular understanding of the fundamental basis of endocrine disrupting chemical interference with PPAR signaling. We thus performed structural and functional analyses that demonstrate how monoethyl-hexyl-phthalate (MEHP) directly activates PPARgamma and promotes adipogenesis, albeit to a lower extent than the full agonist rosiglitazone. Importantly, we demonstrate that MEHP induces a selective activation of different PPARgamma target genes. Chromatin immunoprecipitation and fluorescence microscopy in living cells reveal that this selective activity correlates with the recruitment of a specific subset of PPARgamma coregulators that includes Med1 and PGC-1alpha, but not p300 and SRC-1. These results highlight some key mechanisms in metabolic disruption but are also instrumental in the context of selective PPAR modulation, a promising field for new therapeutic development based on PPAR modulation.