635 resultados para Vanishing Theorems
Resumo:
Using the nonsmooth variant of minimax point theorems, some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian.
Resumo:
In microeconomic analysis functions with diminishing returns to scale (DRS) have frequently been employed. Various properties of increasing quasiconcave aggregator functions with DRS are derived. Furthermore duality in the classical sense as well as of a new type is studied for such aggregator functions in production and consumer theory. In particular representation theorems for direct and indirect aggregator functions are obtained. These involve only small sets of generator functions. The study is carried out in the contemporary framework of abstract convexity and abstract concavity.
Resumo:
R.P. Boas has found necessary and sufficient conditions of belonging of function to Lipschitz class. From his findings it turned out, that the conditions on sine and cosine coefficients for belonging of function to Lip α(0 & α & 1) are the same, but for Lip 1 are different. Later his results were generalized by many authors in the viewpoint of generalization of condition on the majorant of modulus of continuity. The aim of this paper is to obtain Boas-type theorems for generalized Lipschitz classes. To define generalized Lipschitz classes we use the concept of modulus of smoothness of fractional order.
Resumo:
We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)
Resumo:
In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of this results comes from the study of covariant arithmetic Chow groups. The semi-purity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.
Resumo:
We present an envelope theorem for establishing first-order conditions in decision problems involving continuous and discrete choices. Our theorem accommodates general dynamic programming problems, even with unbounded marginal utilities. And, unlike classical envelope theorems that focus only on differentiating value functions, we accommodate other endogenous functions such as default probabilities and interest rates. Our main technical ingredient is how we establish the differentiability of a function at a point: we sandwich the function between two differentiable functions from above and below. Our theory is widely applicable. In unsecured credit models, neither interest rates nor continuation values are globally differentiable. Nevertheless, we establish an Euler equation involving marginal prices and values. In adjustment cost models, we show that first-order conditions apply universally, even if optimal policies are not (S,s). Finally, we incorporate indivisible choices into a classic dynamic insurance analysis.
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.
Resumo:
In this paper, we analyse the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale [16], which describes the collective behavior of an ensemble of organisms, animals or devices. This kinetic version introduced in [24] is here obtained starting from a Boltzmann-type equation. The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. A continuous analogue of the theorems of [16] is shown to hold for the solutions on the kinetic model. More precisely, the solutions will concentrate exponentially fast their velocity to their mean while in space they will converge towards a translational flocking solution.
Resumo:
The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant in this two-allele representation of the evolutionary process is used to characterize features about long-term phenotypic evolution, such as singular points, convergence stability (established from first-order effects of selection), branching points, and evolutionary stability (established from second-order effects of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from this two-allele representation of the evolutionary process. We construct a stochastic model describing evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the second-order stability condition obtained from second-order effects of selection is identical to convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough to characterize long-term evolution under the trait substitution sequence assumption. We perform individual-based simulations to confirm our analytic results.
Resumo:
This paper studies global webs on the projective plane with vanishing curvature. The study is based on an interplay of local and global arguments. The main local ingredient is a criterium for the regularity of the curvature at the neighborhood of a generic point of the discriminant. The main global ingredient, the Legendre transform, is an avatar of classical projective duality in the realm of differential equations. We show that the Legendre transform of what we call reduced convex foliations are webs with zero curvature, and we exhibit a countable infinity family of convex foliations which give rise to a family of webs with zero curvature not admitting non-trivial deformations with zero curvature.
Resumo:
We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincaré duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.
Resumo:
In this paper the scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of stochastic processes are proved. Interpolation method for generously-monotonous rocesses is entered. Conditions and statements of interpolation theorems concern he xed stochastic process, which diers from the classical results.
Resumo:
We propose two types of extensions to Hamburger’s theorems on the Dirichlet series with functional equation like the one of the Riemann zeta function, under weaker hypotheses. This builds upon the dictionary betweeen the moderate meromorphic functions with functional equation and the tempered distributions with extended S-support condition.
Resumo:
Multipliers are routinely used for impact evaluation of private projects and public policies at the national and subnational levels. Oosterhaven and Stelder (2002) correctly pointed out the misuse of standard 'gross' multipliers and proposed the concept of 'net' multiplier as a solution to this bad practice. We prove their proposal is not well founded. We do so by showing that supporting theorems are faulty in enunciation and demonstration. The proofs are flawed due to an analytical error but the theorems themselves cannot be salvaged as generic, non-curiosum counterexamples demonstrate. We also provide a general analytical framework for multipliers and, using it, we show that standard 'gross' multipliers are all that is needed within the interindustry model since they follow the causal logic of the economic model, are well defined and independent of exogenous shocks, and are interpretable as predictors for change.
Resumo:
Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical situations with a very large number of parameters. We prove various convergence theorems for the algorithm. As an application, we first show that the results in Christiano et al. (1999) are very sensitive to the introduction of various priors that are widely used. These priors turn out to be associated with undesirable priors on observables. But an empirical prior on observables helps clarify the relevance of these estimates: we find much higher persistence of output responses to monetary policy shocks than the one reported in Christiano et al. (1999) and a significantly larger total effect.