950 resultados para Unmanned Aerial System (UAS)
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
Near ground maneuvers, such as hover, approach and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground often using ultrasonic or laser range finders. Near ground maneuvers are naturally mastered by flying birds and insects as objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-to-contact (Tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for Unmanned Aerial Vehicles (UAV) relative ground distance control. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the Tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented on-board an experimental quadrotor UAV and shown not only to successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
Improvement and evaluation of the MS2SV for mixed systems design described in abstraction high level
Resumo:
This paper presents an important improvement of the MS2SV tool. The MS2SV performs the translation of mixed systems developed in MATLAB / Simulink for a structural or behavioral description in VHDL-AMS. Previously, the MS2SV translated only models of the LIB MS2SV library. This improvement allows designer to create your own library to translation. As case study was used a rudder controller employed in an unmanned aerial vehicle. For comparison with the original model the VHDL-AMS code obtained by the translation was simulated in SystemVision environment. The results proved the efficiency of the tool using the translation improvement proposed in this paper.
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter¿s position and using the extracted information to control the UAV.
Resumo:
In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of crossentropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.
Resumo:
Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.
Resumo:
New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.
Resumo:
In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Resumo:
In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.
Resumo:
Mosaicing is a technique that allows obtaining a large high resolution image by stitching several images together. These base images are usually acquired from an elevated point of view. Until recently, low-altitude image acquisition has been performed typically by using using airplanes, as well as other manned platforms. However, mini unmanned aerial vehicles (MUAV) endowed with a camera have lately made this task more available for small for cicil applications, for example for small farmers in order to obtain accurate agronomic information about their crop fields. The stitching orientation, or the image acquisition orientation usually coincides with the aircraft heading assuming a downwards orientation of the camera. In this paper, the efect of the image orientation in the eficiency of the aerial coverage path planning is studied. Moreover, an algorithm to compute an optimal stitching orientation angle is proposed and results are numerically compared with classical approaches.
Resumo:
En la presente memoria se describe el trabajo de diseño de una herramienta de interacción persona-ordenador (HMI) para la operación y supervisión de vehículos aéreos no tripulados (UAV). En primer lugar se hace una introducción a los tipos de UAVs y aplicaciones más comunes, describiendo sus características técnicas y los componentes que integra en el sistema. Mediante la revisión y análisis de los diferentes niveles de autonomía y las diferentes soluciones de presentación existentes en el mercado, se identifican los modos de operación y componentes principales de la interfaz. A continuación se describe el diseño final del software de la interfaz y el proceso de desarrollo de la misma, para ello se hace un análisis previo del software robótico sobre el que opera el sistema abordo del UAV y se establecen los enlaces de comunicación entre cada uno de los componentes y los requisitos de integración con el sistema. Finalmente, se muestran las pruebas que se han realizado para validar la construcción de la herramienta. This report outlines the design and construction of a human-machine interface (HMI), designed to facilitate the supervision and operation with unmanned aerial vehicles (UAV). First, it is described an introduction to UAVs classification and application fields, reviewing the hardware features and software integration components. In order to define the basic components and operation modes in the general design, a brief review of the different presentation solutions and autonomous levels is described. As a result, it is presented the final software design, the components details and the system integration requirements. Finally, it is also concluded with some of the tests that have been conducted to validate the design and construction of the human-machine interface
Resumo:
La Universidad Politécnica de Madrid está investigando en el campo de la robótica inteligente, concretamente con el empleo de vehículos aéreos no tripulados (UAV). El objetivo final que se persigue con las investigaciones en este campo es el desarrollo de sistemas capaces de operar de forma más autónoma en un amplio espectro de situaciones. Dentro de este marco, este trabajo fin de grado se centra en el desarrollo de un sistema de supervisión para UAVs que persigue facilitar la monitorización de la ejecución de los procesos y facilitar la inclusión de procedimientos para incrementar la tolerancia a los fallos software. A lo largo de esta memoria se ofrece una revisión del estado del arte en el ámbito de la robótica, haciendo especial hincapié en la robótica inteligente con los métodos de desarrollo existentes y la definición de los distintos marcos de clasificación de la autonomía. También se ofrece una vista a las distintas técnicas existentes para lograr una mayor tolerancia a los fallos software, de entre las que han sido seleccionadas varias de ellas en la realización de este trabajo. Finalmente se describe el sistema de supervisión desarrollado, explicando primero el sistema desde un punto de vista funcional para más adelante adentrarse en la solución técnica elaborada. ---ABSTRACT--- The Universidad Politécnica de Madrid is currently handling several investigations regarding AI robotics, some of them are actually directing their efforts into the use of unmanned aerial vehicles (UAV). The goal in the long term for this investigations is the accomplishment of systems capable of operating autonomously, regardless of the situation the robot is place at. From this perspective, this final degree project focuses on de design and development of a supervision system for UAV’s, which function is to ease the monitoring of executing processes and the inclusion of fault tolerant procedures. During the development of this document a state of the art revision is offered, in which a thorough description through development methods and autonomy definitions for AI robotics is made. It is also offered a look around the different existing techniques for achieving a greater software fault tolerance, from which some of them were chosen for the development of this project. Finally the developed supervision system is described, first from a pure functional perspective of what the system should do and latter with a description of the actual technical solutions developed for this system.