919 resultados para Transform infrared spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CH, Chitosan; HPMC, (Hydroxypropyl)methyl cellulose; FT, Freeze-thaw; SC, Solvent casting; CH:HPMC (X:Y), pH Z, FT/SC, Chitosan and (hydroxypropyl)methyl cellulose hydrogel, at X and Y proportion (0-100), at Z pH (3.0-4.0) and prepared by freeze-thaw or solvent casting techniques; DSC, Differential scanning calorimetry; MDSC, Temperature modulated Differential scanning calorimetry; Tg, glass transition temperature; ΔH, enthalpy change; TGA, Thermogravimetric Analysis; TG, Thermogravimetry; DTG, Derivative or Differential thermogravimetry; σ, Tensile strength; ε, elongation at break; DMA, Dynamic mechanical analysis; X-Ray, X-radiation, FTIR-ATR, Attenuated total reflectance Fourier transform infrared spectroscopy; SEM, Scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia das Plantas - MAP BIOPLANT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Applied Biochemistry (área de especialização em Biomedicine)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] In this work, different multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8% (PHBV8) as support, were developed aiming the development of active bio-based multilayer systems. An interlayer based on zein nanofibers with and without cinnamaldehyde were electrospun in the PHBV8 film and three multilayer systems were developed: 1) without an outer layer; 2) using a PHBV8 film as outer layer; and 3) using an alginate-based film as outer layer. Their physico-chemical properties were evaluated through: water vapour and oxygen permeabilities and colour measurements, Fourier Transform Infrared Spectroscopy (FTIR) and thermal analyses. Results showed that the presence of different outer layers affected the water vapour permeability and transparency of the multilayer films. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectiu principal d’aquest projecte és posar a punt el mètode d’anàlisi d’urea en llet crua de vaca mitjançant la tècnica d’Infraroig per Transformada de Fourier (Fourier Transform Infrared Spectroscopy, FTIR). S’haurà de portar a terme la validació del mètode per FTIR (seguint els criteris de la ISO 17025) mitjançant la comparació amb el mètode de referència utilitzat actualment al laboratori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanically ventilated patients in hospitals are subjected to an increased risk of acquiring nosocomial pneumonia that sometimes has a lethal outcome. One way to minimize the risk could be to make the surfaces on endotracheal tubes antibacterial. In this study, bacterial growth was inhibited or completely prevented by silver ions wet chemically and deposited onto the tube surface. Through the wet chemical treatment developed here, a surface precipitate was formed containing silver chloride and a silver stearate salt. The identity and morphology of the surface precipitate was studied using x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray powder diffraction. Leaching of silver ions into solution was examined, and bacterial growth on the treated surfaces was assayed using Pseudomonas aeruginosa wild type (PAO1) bacteria. Furthermore, the minimum inhibitory concentration of silver ions was determined in liquid- and solid-rich growth medium as 23 and 18 microM, respectively, for P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study represents the most extensive analysis of batch-to-batch variations in spray paint samples to date. The survey was performed as a collaborative project of the ENFSI (European Network of Forensic Science Institutes) Paint and Glass Working Group (EPG) and involved 11 laboratories. Several studies have already shown that paint samples of similar color but from different manufacturers can usually be differentiated using an appropriate analytical sequence. The discrimination of paints from the same manufacturer and color (batch-to-batch variations) is of great interest and these data are seldom found in the literature. This survey concerns the analysis of batches from different color groups (white, papaya (special shade of orange), red and black) with a wide range of analytical techniques and leads to the following conclusions. Colored batch samples are more likely to be differentiated since their pigment composition is more complex (pigment mixtures, added pigments) and therefore subject to variations. These variations may occur during the paint production but may also occur when checking the paint shade in quality control processes. For these samples, techniques aimed at color/pigment(s) characterization (optical microscopy, microspectrophotometry (MSP), Raman spectroscopy) provide better discrimination than techniques aimed at the organic (binder) or inorganic composition (fourier transform infrared spectroscopy (FTIR) or elemental analysis (SEM - scanning electron microscopy and XRF - X-ray fluorescence)). White samples contain mainly titanium dioxide as a pigment and the main differentiation is based on the binder composition (Csingle bondH stretches) detected either by FTIR or Raman. The inorganic composition (elemental analysis) also provides some discrimination. Black samples contain mainly carbon black as a pigment and are problematic with most of the spectroscopic techniques. In this case, pyrolysis-GC/MS represents the best technique to detect differences. Globally, Py-GC/MS may show a high potential of discrimination on all samples but the results are highly dependent on the specific instrumental conditions used. Finally, the discrimination of samples when data was interpreted visually as compared to statistically using principal component analysis (PCA) yielded very similar results. PCA increases sensitivity and could perform better on specific samples, but one first has to ensure that all non-informative variation (baseline deviation) is eliminated by applying correct pre-treatments. Statistical treatments can be used on a large data set and, when combined with an expert's opinion, will provide more objective criteria for decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The El Soplao site is a recently-discovered Early Albian locality of the Basque-Cantabrian Basin (northern Spain) that has yielded a number of amber pieces with abundant bioinclusions. The amber-bearing deposit occurs in a non-marine to transitional marine siliciclastic unit (Las Peñosas Formation) that is interleaved within a regressive-transgressive, carbonate-dominated Lower Aptian-Upper Albian marine sequence. The Las Peñosas Formation corresponds to the regressive stage of this sequence and in its turn it splits into two smaller regressive-transgressive cycles. The coal and amber-bearing deposits occur in deltaic-estuarine environments developed during the maximum regressive episodes of these smaller regressive-transgressive cycles. The El Soplao amber shows Fourier Transform Infrared Spectroscopy spectra similar to other Spanish Cretaceous ambers and it is characterized by the profusion of sub-aerial, stalactite-like flows. Well-preserved plant cuticles assigned to the conifer genera Frenelopsis and Mirovia are abundant in the beds associated with amber. Leaves of the ginkgoalean genera Nehvizdya and Pseudotorellia also occur occasionally. Bioinclusions mainly consist of fossil insects of the orders Blattaria, Hemiptera, Thysanoptera, Raphidioptera, Neuroptera, Coleoptera, Hymenoptera and Diptera, although some spiders and spider webs have been observed as well. Some insects belong to groups scarce in the fossil record, such as a new morphotype of the wasp Archaeromma (of the family Mymarommatidae) and the biting midge Lebanoculicoides (of the monogeneric subfamily Lebanoculicoidinae). This new amber locality constitutes a very significant finding that will contribute to improving the knowledge and comprehension of the Albian non-marine paleoarthropod fauna.