987 resultados para Temperature dependence


Relevância:

70.00% 70.00%

Publicador:

Resumo:

At low temperature (below its freezing/melting temperature), liquid water under confinement is known to exhibit anomalous dynamical features. Here we study structure and dynamics of water in the grooves of a long DNA duplex using molecular dynamics simulations with TIP5P potential at low temperature. We find signatures of a dynamical transition in both translational and orientational dynamics of water molecules in both the major and the minor grooves of a DNA duplex. The transition occurs at a slightly higher temperature (TGL ≈ 255 K) than the temperature at which the bulk water is found to undergo a dynamical transition, which for the TIP5P potential is at 247 K. Groove water, however, exhibits markedly different temperature dependence of its properties from the bulk. Entropy calculations reveal that the minor groove water is ordered even at room temperature, and the transition at T ≈ 255 K can be characterized as a strong-to-strong dynamical transition. Confinement of water in the grooves of DNA favors the formation of a low density four-coordinated state (as a consequence of enthalpy−entropy balance) that makes the liquid−liquid transition stronger. The low temperature water is characterized by pronounced tetrahedral order, as manifested in the sharp rise near 109° in the O−O−O angle distribution. We find that the Adams−Gibbs relation between configurational entropy and translational diffusion holds quite well when the two quantities are plotted together in a master plot for different region of aqueous DNA duplex (bulk, major, and minor grooves) at different temperatures. The activation energy for the transfer of water molecules between different regions of DNA is found to be weakly dependent on temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have carried out temperature- and pressure-dependent Raman and x-ray measurements on single crystals of Tb2Ti2O7. We attribute the observed anomalous temperature dependence of phonons to phonon-phonon anharmonic interactions. The quasiharmonic and anharmonic contributions to the temperature-dependent changes in phonon frequencies are estimated quantitatively using mode Grüneisen parameters derived from pressure-dependent Raman experiments and bulk modulus from high-pressure x-ray measurements. Further, our Raman and x-ray data suggest a subtle structural deformation of the pyrochlore lattice at ~9 GPa. We discuss possible implications of our results on the spin-liquid behavior of Tb2Ti2O7.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In northern latitudes, temperature is the key factor driving the temporal scales of biological activity, namely the length of the growing season and the seasonal efficiency of photosynthesis. The formation of atmospheric concentrations of biogenic volatile organic compounds (BVOCs) are linked to the intensity of biological activity. However, interdisciplinary knowledge of the role of temperature in the biological processes related to the annual cycle and photosynthesis and atmospheric chemistry is not fully understood. The aim of this study was to improve understanding of the role of temperature in these three interlinked areas: 1) onset of growing season, 2) photosynthetic efficiency and 3) BVOC air concentrations in a boreal forest. The results present a cross-section of the role of temperature on different spatial (southern northern boreal), structural (tree forest stand - forest) and temporal (day-season- year) scales. The fundamental status of the Thermal Time model in predicting the onset of spring recovery was confirmed. However, it was recommended that sequential models would be more appropriate tools when the onset of the growing season is estimated under a warmer climate. A similar type of relationship between photosynthetic efficiency and temperature history was found in both southern and northern boreal forest stands. This result draws attention to the critical question of the seasonal efficiency of coniferous species to emit organic compounds under a warmer climate. New knowledge about the temperature dependence of the concentrations of biogenic volatile organic compounds in a boreal forest stand was obtained. The seasonal progress and the inter-correlation of BVOC concentrations in ambient air indicated a link to biological activity. Temperature was found to be the main driving factor for the concentrations. However, in addition to temperature, other factors may play a significant role here, especially when the peak concentrations are studied. There is strong evidence that the spring recovery and phenological events of many plant species have already advanced in Europe. This study does not fully support this observation. In a boreal forest, changes in the annual cycle, especially the temperature requirement in winter, would have an impact on the atmospheric BVOC composition. According to this study, more joint phenological and BVOC field observations and laboratory experiments are still needed to improve these scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we report a systematic study of low frequency 1∕fα resistance fluctuation in thin metal films (Ag on Si) at different stages of damage process when the film is subjected to high current stressing. The resistance fluctuation (noise) measurement was carried out in situ using a small ac bias that has been mixed with the dc stressing current. The experiment has been carried out as a function of temperature in the range of 150–350 K. The experiment establishes that the current stressed film, as it undergoes damage due to various migration forces, develops an additional low-frequency noise spectral power that does not have the usual 1∕f spectral shape. The magnitude of extra term has an activated temperature dependence (activation energy of ≈0.1 eV) and has a 1∕f1.5 spectral dependence. The activation energy is the same as seen from the temperature dependence of the lifetime of the film. The extra 1∕f1.5 spectral power changes the spectral shape of the noise power as the damage process progress. The extra term likely arising from diffusion starts in the early stage of the migration process during current stressing and is noticeable much before any change can be detected in simultaneous resistance measurements. The experiment carried out over a large temperature range establish a strong correlation between the evolution of the migration process in a current stressed film and the low-frequency noise component that is not a 1∕f noise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TE and TFE models were 1.08 and 1.43 eV, respectively. (C) 2011 American Institute of Physics. doi: 10.1063/1.3549685]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we propose to study the evolution of the quantum corrections to the conductivity in an oxide system as we approach the metal-insulator (M-I) transition from the metallic side. We report here the measurement of the low-temperature (0.1 Ktemperatures, the conductivity (?) rises with temperature (T). Below 2 K, ? follows a power-law behavior, ?(T)=?(0)+?Tm. For samples in the metallic regime, away from the metal-insulator transition (x?0.4), m?0.3�0.4. As the transition is approached [i.e., ?(0)?0], m increases rapidly; and at the transition [?(0)=0, xc?0.65], m?1. On the insulating side (x>0.65), m takes on large values and ?(0)=0. We explain the temperature dependence of ?(T), for T<2 K, on the metallic side (x?0.4), as arising predominantly from electron-electron interactions, taking into account the diffusion-channel contribution (which gives m=0.5) as well as the Cooper-channel contribution. In this regime, the correction to conductivity, ??(T), is a small fraction of ?(T). However, as the M-I transition is approached (x?xc), ??(T) starts to dominate ?(T) and the above theories fail to explain the observed ?(T).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a comprehensive study of magnetoresistance (MR) of the crystalline pseudobinary ?-phase Fe alloy series FexNi80-xCr20 (50?x?66). This alloy series shows exotic magnetic phases as the composition (x) is varied. It has a critical composition for ferromagnetism at x=xc?59�60. MR was measured in the temperature range 1.7�110 K and up to a field of 7 T. The observed MR was small and the change was ?1%. The temperature dependence of MR was found to contain a positive and a negative contribution. The positive term was found to be ?H2 and it dominates at high field and high temperatures. We explain this as a manifestation of Kohler�s rule. The negative MR was found to have a quadratic dependence on magnetization M. The magnitude of the negative MR reaches a maximum as x?xc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the temperature dependence of the photoemission spectra of La1-xSrxMnO3 (x=0.0, 0.2, and 0.4) and found that the spectral line shape dramatically changes in the entire valence-band region, particularly for x=0.2 and 0.4. By contrast, the spectra of La0.6Sr0.4CoO3 show no significant temperature dependence. From comparison between the temperature-and composition-(x) dependent spectral changes and the temperature-composition phase diagram of La1-xSrxMnO3, we suggest that the changes are related to the degree of hole localization on oxygen p orbitals, which is influenced by electron-lattice coupling and magnetic correlations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of 2-haloethoxyethyl cholesteryl ethers has been synthesized. Each material shows attractive liquid-crystalline properties as revealed by differential scanning calorimetry, polarizing microscopy, and temperature-dependence of selective reflection characteristic of the cholesteric mesophase. These are interesting examples of simple, nonpolymeric, single component systems that show the cholesteric mesophase at room temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lead-lanthanum-titanate (Pb0.72La0.28)TiO3 (PLT) is one of the interesting materials for DRAM applications due to its room temperature paraelectric nature and its higher dielectric permittivity. PLT thin films of different thickness ranging from 0.54- 0.9 mum were deposited on Pt coated Si substrates by excimer laser ablation technique. We have measured the voltage (field) dependence, the thickness dependence, temperature dependence of dc leakage currents and analysis is done on these PLT thin films. Current- voltage characteristics were measured at different temperatures for different thick films and the thickness dependence of leakage current has been explained by considering space charge limited conduction mechanism. The charge transport phenomena were studied in detail for films of different thicknesses for dynamic random access memory applications.