915 resultados para TRIPLE-RESONANCE NMR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various factors determine the applicability of rice husk ash (RHA) as a pozzolanic material. The amount and accessibility of reactive sites is thought to be a key factor. A structural study of RHA samples in relation to their reactivity has been performed; Silica in RHA formed by burning rice husk in a laboratory furnace under continuous supply of air have been characterized as a function of incineration temperature, time and cooling regime. The characterization methods included chemical analyses, conductivity measurements, microscopic analysis, X-ray diffraction (XRD) and 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR). In line with earlier observations, the analyses show that the highest amounts of amorphous silica occur in samples burnt in the range of 500 °C–700 °C. The 29Si NMR data allow direct identification of the reactive silanol sites in the RHA samples. De-convolution of the NMR spectra clearly shows that the quickly cooled RHA resulting from burning rice husk for 12 h at 500 °C has the highest amount of silanol groups. This sample also induced the largest drop in conductivity when added to a saturated calcium hydroxide solution giving an indication of its reactivity towards lime. Therefore, this RHA is the favorable sample to be used as pozzolanic cement additive

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different earthworm species have different tolerances of acid soil conditions, and the application of lime to upland grassland to improve the grazing quality may therefore alter the size and diversity of the earthworm community. Altering soil properties may also affect the chemical characteristics of organic C in earthworm casts. We surveyed the earthworm community of an upland grassland in southern Scotland at the outset of annual lime applications, and after 3 years, and used C-13 nuclear magnetic resonance (NMR) spectroscopy to assess the distribution of C between different functional groups in the organic matter. In addition, soil was incubated for 8 weeks with several earthworm species in the presence or absence of lime, and the earthworm casts were subsequently analysed by C-13 NMR spectroscopy. Liming did not significantly affect earthworm abundance or species diversity, but it did affect the chemical composition of the casts. Casts from earthworms incubated in unlimed soil had greater ratios of alkyl-C to O-alkyl-C, indicative of more decomposed, recalcitrant C, and spectra from litter-feeding species had the greatest intensities of O-alkyl-C signals. In limed soil, the largest O-alkyl-C signal intensities were not restricted to litter-feeding species, indicating an increase in the quality of organic matter ingested by geophagous species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Homopolymerization of alkylarylcarbenes derived from diazirine monomers that featured benzyl alcohol or phenol residues was found to lead to the production of soluble hyperbranched poly(aryl ether)s. The polymerization process was influenced by the solvents employed, monomer concentration, and the reaction time. An increase in the monomer concentration and reaction time was found to lead to an increase in the molecular weight characteristics of the resulting polymers as determined by gel permeation chromatography (GPC). The composition and architecture of the polyethers were determined by nuclear magnetic resonance (NMR) spectroscopic analysis and were found to be highly complex and dependent on the structure of the monomers used. All of the polymers were found to contain ether linkages formed via carbene insertion into O-H bonds, although polymers derived from phenolic carbenes also contained linkages arising from C-alkylation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel diazirine functionalised aniline derivative, 3-(3-aminophenyl)-3-methyldiazirine 1, was prepared and employed as an AB(2)-type monomer in the synthesis of hyperbranched polymers; thus providing the first instance in which polyamines have been prepared via carbene insertion polymerisation. Photolysis of the monomer 1 in bulk and in solution resulted in the formation of hyperbranched poly(aryl amine)s with degrees of polymerisation (DP) varying from 9 to 26 as determined by gel permeation chromatography (GPC). In solution, an increase in the initial monomer concentration was generally found to result in a decrease in the molecular weight characteristics of the resulting poly(aryl amine) s. Subsequent thermal treatment of the poly(aryl amine) s caused a further increase in the DP values up to a maximum of 31. Nuclear magnetic resonance (NMR) spectroscopic analysis revealed that the increase in molecular weight upon thermal treatment resulted from hydroamination of styrenic species formed in the initial photopolymerisation or activation of diazirine moieties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R2 = 0.66) and Bacteroides (R2 = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil organic matter (SOM) is one of the main global carbon pools. It is a measure of soil quality as its presence increases carbon sequestration and improves physical and chemical soil properties. The determination and characterisation of humic substances gives essential information of the maturity and stresses of soils as well as of their health. However, the determination of the exact nature and molecular structure of these substances has been proven difficult. Several complex techniques exist to characterise SOM and mineralisation and humification processes. One of the more widely accepted for its accuracy is nuclear magnetic resonance (NMR) spectroscopy. Despite its efficacy, NMR needs significant economic resources, equipment, material and time. Proxy measures like the fluorescence index (FI), cold and hot-water extractable carbon (CWC and HWC) and SUVA-254 have the potential to characterise SOM and, in combination, provide qualitative and quantitative data of SOM and its processes. Spanish and British agricultural cambisols were used to measure SOM quality and determine whether similarities were found between optical techniques and 1H NMR results in these two regions with contrasting climatic conditions. High correlations (p < 0.001) were found between the specific aromatic fraction measured with 1H NMR and SUVA-254 (Rs = 0.95) and HWC (Rs = 0.90), which could be described using a linear model. A high correlation between FI and the aromatics fraction measured with 1H NMR (Rs = −0.976) was also observed. In view of our results, optical measures have a potential, in combination, to predict the aromatic fraction of SOM without the need of expensive and time consuming techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The behaviour and fate of macronutrients and pollutants in sewage sludge applied to the land are affected by the chemical composition of the sludge organic matter, which in turn is influenced by both sewage source and by sewage treatment processes. In this study, 13C nuclear magnetic resonance (NMR) spectroscopy was used to characterise the organic matter of sludges collected at three different points along the treatment stream of a municipal sewage works with a domestic catchment. Sludge at the first point, an undigested liquid (UL) sludge, had a substantially different composition to the anaerobically digested (AD) and dewatered sludge cake (DC) materials, which were similar to each other. In particular, the UL sludge contained more alkyl C than the AD or DC sludges. All three sludges were found to contain mobile alkyl C that is poorly observed using the cross polarisation (CP) technique, necessitating the use of the less sensitive, but more quantitatively reliable direct polarisation (DP) technique to obtain accurate distributions of C types.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of different stages of sewage sludge treatment on phosphorus (P) dynamics in amended soils was determined using samples of undigested liquid (UL), anaerobically digested liquid (AD) and dewatered anaerobically digested (DC) sludge. Sludges were taken from three points in the same treatment stream and applied to a sandy loam soil in field-based mesocosms at 4, 8 and 16t ha−1 dry solids. Mesocosms were sown with perennial ryegrass (Lolium perenne cv. Melle), and the sward was harvested after 35 and 70 days to determine yield and foliar P concentration. Soils were also sampled during this period to measure P transformations and the activities of acid phosphomonoesterase and phosphodiesterase. Data show that the AD amended soils had the greatest plant-available and foliar P content up to the second harvest, but the UL amended soils had the greatest enzyme activity. Characterisation of control and 16t ha−1 soils and sludge using solution 31P nuclear magnetic resonance (NMR) spectroscopy after NaOH–EDTA extraction revealed that P was predominantly in the inorganic pool in all three sludge samples, with the highest proportion (of the total extracted P) as inorganic P in the anaerobically digested liquid sludge. After sludge incorporation, P was immobilised to organic species. The majority of organic P was in monoester-P forms, while the remainder of organic P (diester P and phosphonate P) was more susceptible to transformations through time and showed variation with sludge type. These results show that application of sewage sludge at rates as low as 4t ha−1 can have a significant nutritional benefit to ryegrass over an initial 35-day growth and subsequent 35-day re-growth periods. Differences in P transformation, and hence nutritional benefit, between sludge types were evident throughout the experiment. Thus, differences in sludge treatment process alter the edaphic mineralisation characteristics of biosolids derived from the same source material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-Density Lipoprotein (LDL), often known as ""bad cholesterol"" is one of the responsible to increase the risk of coronary arterial diseases. For this reason, the cholesterol present in the LDL particle has become one of the main parameters to be quantified in routine clinical diagnosis. A number of tools are available to assess LDL particles and estimate the cholesterol concentration in the blood. The most common methods to quantify the LDL in the plasma are the density gradient ultracentrifugation and nuclear magnetic resonance (NMR). However, these techniques require special equipments and can take a long time to provide the results. In this paper, we report on the increase of the Europium emission in Europium-oxytetracycline complex aqueous solutions in the presence of LDL. This increase is proportional to the LDL concentration in the solution. This phenomenum can be used to develop a method to quantify the number of LDL particles in a sample. A comparison between the performances of the oxytetracycline and the tetracycline in the complexes is also made.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.