986 resultados para TRANSFER STATE
Resumo:
A steady state multi-segmented heat transfer model of the human upper limbs was developed. The main purpose was to evaluate the impact of blood flow through superficial veins and subcutaneous vascular structures in the palm of the hands over the heat transfer between the limbs and the environment. The distinguishing feature of the model is the inclusion of a detailed circulatory network composed of vessels with diameter larger than 1 mm. The model was validated by comparing its results from exposures to a hot, a neutral, and a cold environment to experimental data presented in the literature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of 1/4, 1/2, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 degrees C. For mass velocities higher than 200 kg/m(2)s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m(2)s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.
Resumo:
Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return.'' In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 mu M of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx +) and Caspase-9-positive (Casp-9 +) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx + (4.6% in control cells; p < 0.01) and 24.9% were Casp-9 + (2.4% in control cells; p < 0.01). Fusion and cleavage were not affected by the use apoptotic cells (p > 0.05). Also, the use of Anx + cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p > 0.05). However, blastocyst formation was affected by the use of Casp-9 + cells (12.3%; p < 0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return'' for apoptosis may be located around activation of Caspase-9.
Resumo:
Abstract Background The p16INK4A gene product halts cell proliferation by preventing phosphorylation of the Rb protein. The p16INK4a gene is often deleted in human glioblastoma multiforme, contributing to unchecked Rb phosphorylation and rapid cell division. We show here that transduction of the human p16INK4a cDNA using the pCL retroviral system is an efficient means of stopping the proliferation of the rat-derrived glioma cell line, C6, both in tissue culture and in an animal model. C6 cells were transduced with pCL retrovirus encoding the p16INK4a, p53, or Rb genes. These cells were analyzed by a colony formation assay. Expression of p16INK4a was confirmed by immunohistochemistry and Western blot analysis. The altered morphology of the p16-expressing cells was further characterized by the senescence-associated β-galactosidase assay. C6 cells infected ex vivo were implanted by stereotaxic injection in order to assess tumor formation. Results The p16INK4a gene arrested C6 cells more efficiently than either p53 or Rb. Continued studies with the p16INK4a gene revealed that a large portion of infected cells expressed the p16INK4a protein and the morphology of these cells was altered. The enlarged, flat, and bi-polar shape indicated a senescence-like state, confirmed by the senescence-associated β-galactosidase assay. The animal model revealed that cells infected with the pCLp16 virus did not form tumors. Conclusion Our results show that retrovirus mediated transfer of p16INK4a halts glioma formation in a rat model. These results corroborate the idea that retrovirus-mediated transfer of the p16INK4a gene may be an effective means to arrest human glioma and glioblastoma.
Resumo:
Spin systems in the presence of disorder are described by two sets of degrees of freedom, associated with orientational (spin) and disorder variables, which may be characterized by two distinct relaxation times. Disordered spin models have been mostly investigated in the quenched regime, which is the usual situation in solid state physics, and in which the relaxation time of the disorder variables is much larger than the typical measurement times. In this quenched regime, disorder variables are fixed, and only the orientational variables are duly thermalized. Recent studies in the context of lattice statistical models for the phase diagrams of nematic liquid-crystalline systems have stimulated the interest of going beyond the quenched regime. The phase diagrams predicted by these calculations for a simple Maier-Saupe model turn out to be qualitative different from the quenched case if the two sets of degrees of freedom are allowed to reach thermal equilibrium during the experimental time, which is known as the fully annealed regime. In this work, we develop a transfer matrix formalism to investigate annealed disordered Ising models on two hierarchical structures, the diamond hierarchical lattice (DHL) and the Apollonian network (AN). The calculations follow the same steps used for the analysis of simple uniform systems, which amounts to deriving proper recurrence maps for the thermodynamic and magnetic variables in terms of the generations of the construction of the hierarchical structures. In this context, we may consider different kinds of disorder, and different types of ferromagnetic and anti-ferromagnetic interactions. In the present work, we analyze the effects of dilution, which are produced by the removal of some magnetic ions. The system is treated in a “grand canonical" ensemble. The introduction of two extra fields, related to the concentration of two different types of particles, leads to higher-rank transfer matrices as compared with the formalism for the usual uniform models. Preliminary calculations on a DHL indicate that there is a phase transition for a wide range of dilution concentrations. Ising spin systems on the AN are known to be ferromagnetically ordered at all temperatures; in the presence of dilution, however, there are indications of a disordered (paramagnetic) phase at low concentrations of magnetic ions.
Resumo:
In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.
Resumo:
Currently pi-conjugated polymers are considered as technologically interesting materials to be used as functional building elements for the development of the new generation of optoelectronic devices. More specifically during the last few years, poly-p-phenylene materials have attracted considerable attention for their blue photoluminescence properties. This Thesis deals with the optical properties of the most representative blue light poly-p-phenylene emitters such as poly(fluorene), oligo(fluorene), poly(indenofluorene) and ladder-type penta(phenylene) derivatives. In the present work, laser induced photoluminescence spectroscopy is used as a major tool for the study of the interdependence between the dynamics of the probed photoluminescence, the molecular structures of the prepared polymeric films and the presence of chemical defects. Complementary results obtained by two-dimensional wide-angle X-ray diffraction are reported. These findings show that the different optical properties observed are influenced by the intermolecular solid-state interactions that in turn are controlled by the pendant groups of the polymer backbone. A significant feedback is delivered regarding the positive impact of a new synthetic route for the preparation of a poly(indenofluorene) derivative on the spectral purity of the compound. The energy transfer mechanisms that operate in the studied systems are addressed by doping experiments. After the evaluation of the structure/property interdependence, a new optical excitation pathway is presented. An efficient photon low-energy up-conversion that sensitises the blue emission of poly(fluorene) is demonstrated. The observed phenomenon takes place in poly(fluorene) derivatives hosts doped with metallated octaethyl porphyrins, after quasi-CW photoexcitation of intensities in the order of kW/cm2. The up-conversion process is parameterised in terms of temperature, wavelength excitation and central metal cation in the porphyrin ring. Additionally the observation of the up-conversion is extended in a broad range of poly-p-phenylene blue light emitting hosts. The dependence of the detected up-conversion intensity on the excitation intensity and doping concentration is reported. Furthermore the dynamics of the up-conversion intensity are monitored as a function of the doping concentration. These experimental results strongly suggest the existence of triplet-triplet annihilation events into the porphyrin molecules that are subsequently followed by energy transfer to the host. After confirming the occurrence of the up-conversion in solutions, cyclic voltammetry is used in order to show that the up-conversion efficiency is partially determined from the energetic alignment between the HOMO levels of the host and the dopant.
Resumo:
Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.
Resumo:
We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.
Resumo:
Cytochrom c Oxidase (CcO), der Komplex IV der Atmungskette, ist eine der Häm-Kupfer enthaltenden Oxidasen und hat eine wichtige Funktion im Zellmetabolismus. Das Enzym enthält vier prosthetische Gruppen und befindet sich in der inneren Membran von Mitochondrien und in der Zellmembran einiger aerober Bakterien. Die CcO katalysiert den Elektronentransfer (ET) von Cytochrom c zu O2, wobei die eigentliche Reaktion am binuklearen Zentrum (CuB-Häm a3) erfolgt. Bei der Reduktion von O2 zu zwei H2O werden vier Protonen verbraucht. Zudem werden vier Protonen über die Membran transportiert, wodurch eine elektrochemische Potentialdifferenz dieser Ionen zwischen Matrix und Intermembranphase entsteht. Trotz ihrer Wichtigkeit sind Membranproteine wie die CcO noch wenig untersucht, weshalb auch der Mechanismus der Atmungskette noch nicht vollständig aufgeklärt ist. Das Ziel dieser Arbeit ist, einen Beitrag zum Verständnis der Funktion der CcO zu leisten. Hierzu wurde die CcO aus Rhodobacter sphaeroides über einen His-Anker, der am C-Terminus der Untereinheit II angebracht wurde, an eine funktionalisierte Metallelektrode in definierter Orientierung gebunden. Der erste Elektronenakzeptor, das CuA, liegt dabei am nächsten zur Metalloberfläche. Dann wurde eine Doppelschicht aus Lipiden insitu zwischen die gebundenen Proteine eingefügt, was zur sog. proteingebundenen Lipid-Doppelschicht Membran (ptBLM) führt. Dabei musste die optimale Oberflächenkonzentration der gebundenen Proteine herausgefunden werden. Elektrochemische Impedanzspektroskopie(EIS), Oberflächenplasmonenresonanzspektroskopie (SPR) und zyklische Voltammetrie (CV) wurden angewandt um die Aktivität der CcO als Funktion der Packungsdichte zu charakterisieren. Der Hauptteil der Arbeit betrifft die Untersuchung des direkten ET zur CcO unter anaeroben Bedingungen. Die Kombination aus zeitaufgelöster oberflächenverstärkter Infrarot-Absorptionsspektroskopie (tr-SEIRAS) und Elektrochemie hat sich dafür als besonders geeignet erwiesen. In einer ersten Studie wurde der ET mit Hilfe von fast scan CV untersucht, wobei CVs von nicht-aktivierter sowie aktivierter CcO mit verschiedenen Vorschubgeschwindigkeiten gemessen wurden. Die aktivierte Form wurde nach dem katalytischen Umsatz des Proteins in Anwesenheit von O2 erhalten. Ein vier-ET-modell wurde entwickelt um die CVs zu analysieren. Die Methode erlaubt zwischen dem Mechanismus des sequentiellen und des unabhängigen ET zu den vier Zentren CuA, Häm a, Häm a3 und CuB zu unterscheiden. Zudem lassen sich die Standardredoxpotentiale und die kinetischen Koeffizienten des ET bestimmen. In einer zweiten Studie wurde tr-SEIRAS im step scan Modus angewandt. Dafür wurden Rechteckpulse an die CcO angelegt und SEIRAS im ART-Modus verwendet um Spektren bei definierten Zeitscheiben aufzunehmen. Aus diesen Spektren wurden einzelne Banden isoliert, die Veränderungen von Vibrationsmoden der Aminosäuren und Peptidgruppen in Abhängigkeit des Redoxzustands der Zentren zeigen. Aufgrund von Zuordnungen aus der Literatur, die durch potentiometrische Titration der CcO ermittelt wurden, konnten die Banden versuchsweise den Redoxzentren zugeordnet werden. Die Bandenflächen gegen die Zeit aufgetragen geben dann die Redox-Kinetik der Zentren wieder und wurden wiederum mit dem vier-ET-Modell ausgewertet. Die Ergebnisse beider Studien erlauben die Schlussfolgerung, dass der ET zur CcO in einer ptBLM mit größter Wahrscheinlichkeit dem sequentiellen Mechanismus folgt, was dem natürlichen ET von Cytochrom c zur CcO entspricht.
Parahydrogen induced polarization on a clinical MRI system : polarization transfer of two spin order
Resumo:
Hyperpolarization techniques enhance the nuclear spin polarization and thus allow for new nuclear magnetic resonance applications like in vivo metabolic imaging. One of these techniques is Parahydrogen Induced Polarization (PHIP). It leads to a hyperpolarized 1H spin state which can be transferred to a heteronucleus like 13C by a radiofrequency (RF) pulse sequence. In this work, timing of such a sequence was analyzed and optimized for the molecule hydroxyethyl propionate. The pulse sequence was adapted for the work on a clinical magnetic resonance imaging (MRI) system which is usually equipped only with a single RF transmit channel. Optimal control theory optimizations were performed to achieve an optimized polarization transfer. A drawback of hyperpolarization is its limited lifetime due to relaxation processes. The lifetime can be increased by storing the hyperpolarization in a spin singlet state. The second part of this work therefore addresses the spin singlet state of the Cs-symmetric molecule dimethyl maleate which needs to be converted to the spin triplet state to be detectable. This conversion was realized on a clinical MRI system, both by field cycling and by two RF pulse sequences which were adapted and optimized for this purpose. Using multiple conversions enables the determination of the lifetime of the singlet state as well as the conversion efficiency of the RF pulse sequence. Both, the hyperpolarized 13C spin state and the converted singlet state were utilized for MR imaging. Careful choice of the echo time was shown to be crucial for both molecules.
Targeting neuronal populations by AAV-mediated gene transfer for studying the endocannabinoid system
Resumo:
The cannabinoid type 1 (CB1) receptor is involved in a plethora of physiological functions and heterogeneously expressed on different neuronal populations. Several conditional loss-of-function studies revealed distinct effects of CB1 receptor signaling on glutamatergic and GABAergic neurons, respectively. To gain a comprehensive picture of CB1 receptor-mediated effects, the present study aimed at developing a gain-of-function approach, which complements conditional loss-of-function studies. Therefore, adeno-associated virus (AAV)-mediated gene delivery and Cre-mediated recombination were combined to recreate an innovative method, which ensures region- and cell type-specific transgene expression in the brain. This method was used to overexpress the CB1 receptor in glutamatergic pyramidal neurons of the mouse hippocampus. Enhanced CB1 receptor activity at glutamatergic terminals caused impairment in hippocampus-dependent memory performance. On the other hand, elevated CB1 receptor levels provoked an increased protection against kainic acid-induced seizures and against excitotoxic neuronal cell death. This finding indicates the protective role of CB1 receptor on hippocampal glutamatergic terminals as a molecular stout guard in controlling excessive neuronal network activity. Hence, CB1 receptor on glutamatergic hippocampal neurons may represent a target for novel agents to restrain excitotoxic events and to treat neurodegenerative diseases. Endocannabinoid synthesizing and degrading enzymes tightly regulate endocannabinoid signaling, and thus, represent a promising therapeutic target. To further elucidate the precise function of the 2-AG degrading enzyme monoacylglycerol lipase (MAGL), MAGL was overexpressed specifically in hippocampal pyramidal neurons. This genetic modification resulted in highly increased MAGL activity accompanied by a 50 % decrease in 2-AG levels without affecting the content of arachidonic acid and anandamide. Elevated MAGL protein levels at glutamatergic terminals eliminated depolarization-induced suppression of excitation (DSE), while depolarization-induced suppression of inhibition (DSI) was unchanged. This result indicates that the on-demand availability of the endocannabinoid 2-AG is crucial for short-term plasticity at glutamatergic synapses in the hippocampus. Mice overexpressing MAGL exhibited elevated corticosterone levels under basal conditions and an increase in anxiety-like behavior, but surprisingly, showed no changes in aversive memory formation and in seizure susceptibility. This finding suggests that 2 AG-mediated hippocampal DSE is essential for adapting to aversive situations, but is not required to form aversive memory and to protect against kainic acid-induced seizures. Thus, specific inhibition of MAGL expressed in hippocampal pyramidal neurons may represent a potential treatment strategy for anxiety and stress disorders. Finally, the method of AAV-mediated cell type-specific transgene expression was advanced to allow drug-inducible and reversible transgene expression. Therefore, elements of the tetracycline-controlled gene expression system were incorporated in our “conditional” AAV vector. This approach showed that transgene expression is switched on after drug application and that background activity in the uninduced state was only detectable in scattered cells of the hippocampus. Thus, this AAV vector will proof useful for future research applications and gene therapy approaches.
Resumo:
In dieser Arbeit werden die Dynamiken angeregter Zustände in Donor-Akzeptorsystemen für Energieumwandlungsprozesse mit ultraschneller zeitaufgelöster optischer Spektroskopie behandelt. Der Hauptteil dieser Arbeit legt den Fokus auf die Erforschung der Photophysik organischer Solarzellen, deren aktive Schichten aus diketopyrrolopyrrole (DPP) basierten Polymeren mit kleiner Bandlücke als Elektronendonatoren und Fullerenen als Elektronenakzeptoren bestehen. rnEin zweiter Teil widmet sich der Erforschung von künstlichen primären Photosynthesereaktionszentren, basierend auf Porphyrinen, Quinonen und Ferrocenen, die jeweils als Lichtsammeleinheit, Elektronenakzeptor beziehungsweise als Elektronendonatoren eingesetzt werden, um langlebige ladungsgetrennte Zustände zu erzeugen.rnrnZeitaufgelöste Photolumineszenzspektroskopie und transiente Absorptionsspektroskopie haben gezeigt, dass Singulettexzitonenlebenszeiten in den Polymeren PTDPP-TT und PFDPP-TT Polymeren kurz sind (< 20 ps) und dass in Mischungen der Polymere mit PC71BM geminale Rekombination von gebundenen Ladungstransferzuständen ein Hauptverlustkanal ist. Zudem wurde in beiden Systemen schnelle nichtgeminale Rekombination freier Ladungen zu Triplettzuständen auf dem Polymer beobachtet. Für das Donor-Akzeptor System PDPP5T:PC71BM wurde nachgewiesen, dass die Zugabe eines Lösungsmittels mit hohem Siedepunkt, und zwar ortho-Dichlorbenzol, die Morphologie der aktiven Schicht stark beeinflusst und die Solarzelleneffizienz verbessert. Der Grund hierfür ist, dass die Donator- und Akzeptormaterialien besser durchmischt sind und sich Perkolationswege zu den Elektroden ausgebildet haben, was zu einer verbesserten Ladungsträgergeneration und Extraktion führt. Schnelle Bildung des Triplettzustands wurde in beiden PDPP5T:PC71BM Systemen beobachtet, da der Triplettzustand des Polymers über Laungstransferzustände mit Triplettcharakter populiert werden kann. "Multivariate curve resolution" (MCR) Analyse hat eine starke Intensitätsabhängigkeit gezeigt, was auf nichtgeminale Ladungsträgerrekombination in den Triplettzustand hinweist.rnrnIn den künstlichen primären Photosynthesereaktionszentren hat transiente Absorptionsspektroskopie bestätigt, dass photoinduzierter Ladungstransfer in Quinon-Porphyrin (Q-P) und Porphyrin-Ferrocen (P-Fc) Diaden sowie in Quinon-Porphyrin-Ferrocen (Q-P-Fc) Triaden effizient ist. Es wurde jedoch auch gezeigt, dass in den P-Fc unf Q-P-Fc Systemen die ladungsgetrennten Zustände in den Triplettzustand der jeweiligen Porphyrine rekombinieren. Der ladungsgetrennte Zustand konnte in der Q-P Diade durch Zugabe einer Lewissäure signifikant stabilisiert werden.
Resumo:
Energy in a multipartite quantum system appears from an operational perspective to be distributed to some extent non-locally because of correlations extant among the system's components. This non-locality allows users to transfer, in effect, locally accessible energy between sites of different system components by local operations and classical communication (LOCC). Quantum energy teleportation is a three-step LOCC protocol, accomplished without an external energy carrier, for effectively transferring energy between two physically separated, but correlated, sites. We apply this LOCC teleportation protocol to a model Heisenberg spin particle pair initially in a quantum thermal Gibbs state, making temperature an explicit parameter. We find in this setting that energy teleportation is possible at any temperature, even at temperatures above the threshold where the particles' entanglement vanishes. This shows for Gibbs spin states that entanglement is not fundamentally necessary for energy teleportation; correlation other than entanglement can suffice. Dissonance-quantum correlation in separable states-is in this regard shown to be a quantum resource for energy teleportation, more dissonance being consistently associated with greater energy yield. We compare energy teleportation from particle A to B in Gibbs states with direct local energy extraction by a general quantum operation on B and find a temperature threshold below which energy extraction by a local operation is impossible. This threshold delineates essentially two regimes: a high temperature regime where entanglement vanishes and the teleportation generated by other quantum correlations yields only vanishingly little energy relative to local extraction and a second low-temperature teleportation regime where energy is available at B only by teleportation.