208 resultados para TMD
Resumo:
The aims of this study were to analyse the validity, sensitivity and specificity of the protocol of oro-facial myofunctional evaluation with scores (OMES) for oro-facial myofunctional disorder (OMD) diagnosis in young and adult subjects. Eighty subjects were examined. The OMES was validated against the Nordic Orofacial Test-Screening (NOT-S) protocol (criterion validity) (Spearman correlation test). The construct validity was tested by analysis of the ability of the OMES (i) to differentiate healthy subjects (n = 22) from temporomandibular disorder (TMD) patients (n = 22), which frequently have OMD (MannWhitney test) and (ii) to measure the changes that occurred in a subgroup with TMD between the period before and after oro-facial myofunctional therapy (T group, n = 15) (Wilcoxon test). Two speech therapists trained with the OMES participated as examiners (E). There was a statistically significant correlation between the OMES and NOT-S protocols, which was negative because the two scales are inverse (r = -0.86, P < 0.01). There was a significant difference between the healthy and TMD subjects regarding the oro-facial myofunctional status (OMES total score, P = 0.003). After therapy, the T group showed improvement in the oro-facial myofunctional status (OMES total score, P = 0.001). Inter- and intra-examiner agreement was moderate, and the reliability coefficients ranged from good to excellent. The OMES protocol presented mean sensitivity and specificity = 0.80, positive predictive value = 0.76 and negative predictive value = 0.84. Conclusion: The OMES protocol is valid and reliable for clinical evaluation of young and adult subjects, among them patients with TMD.
Resumo:
The aim of this study was to determine the prevalence of signs and symptoms of temporomandibular disorders (TMD) and otologic symptoms in patients with and without tinnitus. The influence of the level of depression was also addressed. The tinnitus group was comprised of 100 patients with tinnitus, and control group was comprised of 100 individuals without tinnitus. All subjects were evaluated using the research diagnostic criteria for temporomandibular disorders (RDC/TMD) to determine the presence of TMD and depression level. Chi-square, Spearman Correlation and Mann-Whitney tests were used in statistical analysis, with a 5% significance level. TMD signs and symptoms were detected in 85% of patients with tinnitus and in 55% of controls (P = 0.001). The severity of pain and higher depression levels were positively associated with tinnitus (P = 0.001). It was concluded that tinnitus is associated with TMD and with otalgia, dizziness/vertigo, stuffy sensations, hypoacusis sensation and hyperacusis, as well as with higher depression levels.
Resumo:
In this paper we investigate the solubility of a hard-sphere gas in a solvent modeled as an associating lattice gas. The solution phase diagram for solute at 5% is compared with the phase diagram of the original solute free model. Model properties are investigated both through Monte Carlo simulations and a cluster approximation. The model solubility is computed via simulations and is shown to exhibit a minimum as a function of temperature. The line of minimum solubility (TmS) coincides with the line of maximum density (TMD) for different solvent chemical potentials, in accordance with the literature on continuous realistic models and on the "cavity" picture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4743635]
Resumo:
Temporomandibular disorders (TMD) are characterized by the presence of temporomandibular joint (TMJ) and/or masticatory muscle pain and dysfunction. Low-level laser is presented as an adjuvant therapeutic modality for the treatment of TMD, especially when the presence of inflammatory pain is suspected. Objective: To systematically review studies that investigated the effect of low level laser therapy (LLLT) on the pain levels in individuals with TMD. Material and Methods: The databases Scopus, embase, ebsco and PubMed were reviewed from January/2003 to October/2010 with the following keywords: laser therapy, low-level laser therapy, temporomandibular joint disorders, temporomandibular joint dysfunction syndrome, temporomandibular joint, temporomandibular, facial pain and arthralgia, with the inclusion criteria for intervention studies in humans. exclusion criteria adopted were intervention studies in animals, studies that were not written in english, Spanish or Portuguese, theses, monographs, and abstracts presented in scientific events. Results: After a careful review, 14 studies fit the criteria for inclusion, of which, 12 used a placebo group. As for the protocol for laser application, the energy density used ranged from 0.9 to 105 J/cm², while the power density ranged from 9.8 to 500 mW. The number of sessions varied from 1 to 20 and the frequency of applications ranged from daily for 10 days to 1 time per week for 4 weeks. A reduction in pain levels was reported in 13 studies, with 9 of these occurring only in the experimental group, and 4 studies reporting pain relief for both the experimental group and for the placebo. Conclusion: Most papers showed that LLLT seemed to be effective in reducing pain from TMD. However, the heterogeneity of the standardization regarding the parameters of laser calls for caution in interpretation of these results. Thus, it is necessary to conduct further research in order to obtain a consensus regarding the best application protocol for pain relief in patients with TMD.
Resumo:
OBJECTIVE: To assess the frequency and severity of the signs and symptoms of temporomandibular disorders (TMD), the frequency of parafunctional oral habits and the correlation between the variables by means of the patients' perception regarding their problem. METHODS: One hundred patients diagnosed with TMD, through a clinical examination of their masticatory system, answered the questions of a previously published protocol concerning the signs and symptoms most frequently reported in the literature. RESULTS: According to the results from the non parametric statistical analysis, the frequency for the following signs and symptoms was significant: Fatigue and muscle pain, joint sounds, tinnitus, ear fullness, headache, chewing impairment and difficulty to yawn (p<0.01) and otalgia (p<0.05). As to the parafunctional oral habits, there was a significant presence of teeth clenching during the day and night (p<0.01) and teeth grinding at night (p<0.05). The variable correlation analysis showed that there was a positive correlation between symptom frequency and severity; age was correlated with the presence of otalgia, cervical pain and teeth sensitivity, besides being correlated with muscle and joint pain severity. Habit frequency was negatively correlated with age. TMD duration was also positively correlated with the symptoms of tinnitus, ear fullness, muscle and joint pain. CONCLUSION: The study results showed that the anamnestic assessment using ProDTMMulti can predict the severity of the TMD case.
Resumo:
Subjects with temporomandibular disorders (TMDs) have been found to have clinical signs and symptoms of cervical dysfunction. Although many studies have investigated the relationship between the cervical spine and TMD, no study has evaluated the endurance capacity of the cervical muscles in patients with TMD. Thus the objective of this study was to determine whether patients with TMD had a reduced endurance of the cervical flexor muscles at any level of muscular contraction when compared with healthy subjects. One hundred and forty-nine participants provided data for this study (49 subjects were healthy, 54 had myogenous TMD, and 46 had mixed TMD). There was a significant difference in holding time at 25% MVC between subjects with mixed TMD when compared to subjects with myogenous TMD and healthy subjects. This implies that subjects with mixed TMD had less endurance capacity at a lower level of contraction (25% MVC) than healthy subjects and subjects with myogenous TMD. No significant associations between neck disability, jaw disability, clinical variables and neck flexor endurance test were found.
Resumo:
Most patients with temporomandibular disorders (TMD) have been shown to have cervical spine dysfunction. However, this cervical dysfunction has been evaluated only qualitatively through a general clinical examination of the cervical spine.
Resumo:
To determine whether patients with myogenous and mixed temporomandibular disorders (TMD) have greater fatigability of the cervical extensor muscles while performing a neck extensor muscle endurance test (NEMET) when compared with healthy controls.
Resumo:
The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites.
Resumo:
AIM To systematically search the literature and assess the available evidence for the influence of chin-cup therapy on the temporomandibular joint regarding morphological adaptations and appearance of temporomandibular disorders (TMD). MATERIALS AND METHODS Electronic database searches of published and unpublished literature were performed. The following electronic databases with no language and publication date restrictions were searched: MEDLINE (via Ovid and PubMed), EMBASE (via Ovid), the Cochrane Oral Health Group's Trials Register, and CENTRAL. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, and Pro-Quest Dissertation Abstracts and Thesis database. The reference lists of all eligible studies were checked for additional studies. Two review authors performed data extraction independently and in duplicate using data collection forms. Disagreements were resolved by discussion or the involvement of an arbiter. RESULTS From the 209 articles identified, 55 papers were considered eligible for inclusion in the review. Following the full text reading stage, 12 studies qualified for the final review analysis. No randomized clinical trial was identified. Eight of the included studies were of prospective and four of retrospective design. All studies were assessed for their quality and graded eventually from low to medium level of evidence. Based on the reported evidence, chin-cup therapy affects the condylar growth pattern, even though two studies reported no significance changes in disc position and arthrosis configuration. Concerning the incidence of TMD, it can be concluded from the available evidence that chin-cup therapy constitutes no risk factor for TMD. CONCLUSION Based on the available evidence, chin-cup therapy for Class III orthodontic anomaly seems to induce craniofacial adaptations. Nevertheless, there are insufficient or low-quality data in the orthodontic literature to allow the formulation of clear statements regarding the influence of chin-cup treatment on the temporomandibular joint.
Resumo:
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.
Resumo:
Integral membrane proteins (IMPs) contain localization signals necessary for targeting to their resident subcellular compartments. To define signals that mediate localization to the Golgi complex, we have analyzed a resident IMP of the Saccharomyces cerevisiae Golgi complex, guanosine diphosphatase (GDPase). GDPase, which is necessary for Golgi-specific glycosylation reactions, is a type II IMP with a short amino-terminal cytoplasmic domain, a single transmembrane domain (TMD), and a large catalytic lumenal domain. Regions specifying Golgi localization were identified by analyzing recombinant proteins either lacking GDPase domains or containing corresponding domains from type II vacuolar IMPs. Neither deletion nor substitution of the GDPase cytoplasmic domain perturbed Golgi localization. Exchanging the GDPase TMD with vacuolar protein TMDs only marginally affected Golgi localization. Replacement of the lumenal domain resulted in mislocalization of the chimeric protein from the Golgi to the vacuole, but a similar substitution leaving 34 amino acids of the GDPase lumenal domain intact was properly localized. These results identify a major Golgi localization determinant in the membrane-adjacent lumenal region (stem) of GDPase. Although necessary, the stem domain is not sufficient to mediate localization; in addition, a membrane-anchoring domain and either the cytoplasmic or full-length lumenal domain must be present to maintain Golgi residence. The importance of lumenal domain sequences in GDPase Golgi localization and the requirement for multiple hydrophilic protein domains support a model for Golgi localization invoking protein–protein interactions rather than interactions between the TMD and the lipid bilayer.
Resumo:
We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively. In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to the conduction band splittings. Given that these materials are most often n-doped, our findings are important for developments in TMD spintronics.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).