984 resultados para TIME-RESOLVED SAXS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Binary probes are oligonucleotide probe pairs that hybridize adjacently to a complementary target nucleic acid. In order to detect this hybridization, the two probes can be modified with, for example, fluorescent molecules, chemically reactive groups or nucleic acid enzymes. The benefit of this kind of binary probe based approach is that the hybridization elicits a detectable signal which is distinguishable from background noise even though unbound probes are not removed by washing before measurement. In addition, the requirement of two simultaneous binding events increases specificity. Similarly to binary oligonucleotide probes, also certain enzymes and fluorescent proteins can be divided into two parts and used in separation-free assays. Split enzyme and fluorescent protein reporters have practical applications among others as tools to investigate protein-protein interactions within living cells. In this study, a novel label technology, switchable lanthanide luminescence, was introduced and used successfully in model assays for nucleic acid and protein detection. This label technology is based on a luminescent lanthanide chelate divided into two inherently non-luminescent moieties, an ion carrier chelate and a light harvesting antenna ligand. These form a highly luminescent complex when brought into close proximity; i.e., the label moieties switch from a dark state to a luminescent state. This kind of mixed lanthanide complex has the same beneficial photophysical properties as the more typical lanthanide chelates and cryptates - sharp emission peaks, long emission lifetime enabling time-resolved measurement, and large Stokes’ shift, which minimize the background signal. Furthermore, the switchable lanthanide luminescence technique enables a homogeneous assay set-up. Here, switchable lanthanide luminescence label technology was first applied to sensitive, homogeneous, single-target nucleic acid and protein assays with picomolar detection limits and high signal to background ratios. Thereafter, a homogeneous four-plex nucleic acid array-based assay was developed. Finally, the label technology was shown to be effective in discrimination of single nucleotide mismatched targets from fully matched targets and the luminescent complex formation was analyzed more thoroughly. In conclusion, this study demonstrates that the switchable lanthanide luminescencebased label technology can be used in various homogeneous bioanalytical assays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An aging population and increasing rates of diabetes mellitus contribute to a high prevalence of kidney dysfunction – approximately 10 percent of adults in developed countries have chronic kidney disease (CKD). CKD is a progressive loss of kidney function and this remains permanent. Early recognition of this condition is important for prevention or impeding severe adverse cardiac and renal outcomes. Cystatin C is a low molecular weight cysteine protease inhibitor that has emerged as a biomarker of kidney function. The special potential of plasma cystatin C in this setting is related to its independency of muscle mass, which is a remarkable limitation of the traditional marker creatinine. Cystatin C is a sensitive marker in diagnosing mild and moderate CKD, especially in small children, in the elderly and in conditions where muscle mass is affected. Cystatin C is quantified with immunoassays, mainly based on particle-enhanced nephelometry (PENIA) or turbidimetry (PETIA). The aim of this study was to develop a rapid and reliable assay for quantification of human cystatin C in plasma or serum by utilizing time-resolved fluorescence-based immunoassay methods. This was accomplished by utilizing different antibodies, including polyclonal and 7 monoclonal antibodies against cystatin C. Different assay designs were tested and the best assay was further modified to a dry-reagent double monoclonal assay run on an automated immunonalyzer. This assay was evaluated for clinical performance in estimating reduced kidney function and in predicting risk of adverse outcomes in patients with non-ST elevation acute coronary syndrome. Of the tested assay designs, heterogeneous non-competitive assay had the best performace and was chosen to be developed further. As an automated double monoclonal assay, this assay enabled a reliable measurement of clinically relevant cystatin C concentrations. It also showed a stronger concordance with the reference clearance method than the conventional PETIA method in patients with reduced kidney function. Risk of all-cause mortality and combined events, defined by death and myocardial infarction, increased with higher cystatin C and cystatin C remained an independent predictor of death and combined events after adjustment to nonbiochemical baseline factors. In conclusion, the developed dry-reagent double monoclonal assay allows rapid and reliable quantitative measurement of cystatin C. As measured with the developed assay, cystatin C is a potential predictor of adverse outcomes in cardiac patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostate cancer is a heterogeneous disease affecting an increasing number of men all over the world, but particularly in the countries with the Western lifestyle. The best biomarker assay currently available for the diagnosis of the disease, the measurement of prostate specific antigen (PSA) levels from blood, lacks specificity, and even when combined with invasive tests such as digital rectal exam and prostate tissue biopsies, these methods can both miss cancers, and lead to overdiagnosis and subsequent overtreatment of cancers. Moreover, they cannot provide an accurate prognosis for the disease. Due to the high prevalence of indolent prostate cancers, the majority of men affected by prostate cancer would be able to live without any medical intervention. Their latent prostate tumors would not cause any clinical symptoms during their lifetime, but few are willing to take the risk, as currently there are no methods or biomarkers to reliably differentiate the indolent cancers from the aggressive, lethal cases that really are in need of immediate medical treatment. This doctoral work concentrated on validating 12 novel candidate genes for use as biomarkers for prostate cancer by measuring their mRNA expression levels in prostate tissue and peripheral blood of men with cancer as well as unaffected individuals. The panel of genes included the most prominent markers in the current literature: PCA3 and the fusion gene TMPRSS2-ERG, in addition to BMP-6, FGF-8b, MSMB, PSCA, SPINK1, and TRPM8; and the kallikrein-related peptidase genes 2, 3, 4, and 15. Truly quantitative reverse-transcription PCR assays were developed for each of the genes for the purpose, time-resolved fluorometry was applied in the real-time detection of the amplification products, and the gene expression data were normalized by using artificial internal RNA standards. Cancer-related, statistically significant differences in gene transcript levels were found for TMPRSS2-ERG, PCA3, and in a more modest scale, for KLK15, PSCA, and SPINK1. PCA3 RNA was found in the blood of men with metastatic prostate cancer, but not in localized cases of cancer, suggesting limitations for using this method for early cancer detection in blood. TMPRSS2-ERG mRNA transcripts were found more frequently in cancerous than in benign prostate tissues, but they were present also in 51% of the histologically benign prostate tissues of men with prostate cancer, while being absent in specimens from men without any signs of prostate cancer. PCA3 was shown to be 5.8 times overexpressed in cancerous tissue, but similarly to the fusion gene mRNA, its levels were upregulated also in the histologically benign regions of the tissue if the corresponding prostate was harboring carcinoma. These results indicate a possibility to utilize these molecular assays to assist in prostate cancer risk evaluation especially in men with initially histologically negative biopsies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photophysical properties of zinc phthalocyanine (ZnPC) and chloroaluminum phthalocyanine (AlPHCl) incorporated into liposomes of dimyristoyl phosphatidylcholine in the presence and absence of additives such as cholesterol or cardiolipin were studied by time-resolved fluorescence, laser flash photolysis and steady-state techniques. The absorbance of the drugs changed linearly with drug concentration, at least up to 5.0 µM in homogeneous and heterogeneous media, indicating that aggregation did not occur in these media within this concentration range. The incorporation of the drugs into liposomes increases the dimerization constant by one order of magnitude (for ZnPC, 3.6 x 10(4) to 1.0 x 10(5) M-1 and for AlPHCl, 3.7 x 10(4) to 1.5 x 10(5) M-1), but this feature dose does not rule out the use of this carrier, since the incorporation of these hydrophobic drugs into liposomes permits their systemic administration. Probe location in biological membranes and predominant positions of the phthalocyanines in liposomes were inferred on the basis of their fluorescence and triplet state properties. Both phthalocyanines are preferentially distributed in the internal regions of the liposome bilayer. The additives affect the distribution of these drugs within the liposomes, a fact that controls their delivery when both are used in a biological medium, retarding their release. The addition of the additives to the liposomes increases the internalization of phthalocyanines. The interaction of the drugs with a plasma protein, bovine serum albumin, was examined quantitatively by the fluorescence technique. The results show that when the drugs were incorporated into small unilamellar liposomes, the association with albumin was enhanced when compared with organic media, a fact that should increase the selectivity of tumor targeting by these phthalocyanines (for ZnPC, 0.71 x 10(6) to 1.30 x 10(7) M-1 and for AlPHCl, 4.86 x 10(7) to 3.10 x 10(8) M-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the work presented in this study was to demonstrate the wide applicability of a single-label quenching resonance energy transfer (QRET) assay based on time-resolved lanthanide luminescence. QRET technology is proximity dependent method utilizing weak and unspecific interaction between soluble quencher molecule and lanthanide chelate. The interaction between quencher and chelate is lost when the ligand binds to its target molecule. The properties of QRET technology are especially useful in high throughput screening (HTS) assays. At the beginning of this study, only end-point type QRET technology was available. To enable efficient study of enzymatic reactions, the QRET technology was further developed to enable measurement of reaction kinetics. This was performed using proteindeoxyribonuclei acid (DNA) interaction as a first tool to monitor reaction kinetics. Later, the QRET was used to study nucleotide exchange reaction kinetics and mutation induced effects to the small GTPase activity. Small GTPases act as a molecular switch shifting between active GTP bound and inactive GDP bound conformation. The possibility of monitoring reaction kinetics using the QRET technology was evaluated using two homogeneous assays: a direct growth factor detection assay and a nucleotide exchange monitoring assay with small GTPases. To complete the list, a heterogeneous assay for monitoring GTP hydrolysis using small GTPases, was developed. All these small GTPase assays could be performed using nanomolar protein concentrations without GTPase pretreatment. The results from these studies demonstrated that QRET technology can be used to monitor reaction kinetics and further enable the possibility to use the same method for screening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Point-of-care (POC) –diagnostics is a field with rapidly growing market share. As these applications become more widely used, there is an increasing pressure to improve their performance to match the one of a central laboratory tests. Lanthanide luminescence has been widely utilized in diagnostics because of the numerous advantages gained by the utilization of time-resolved or anti-Stokes detection. So far the use of lanthanide labels in POC has been scarce due to limitations set by the instrumentation required for their detection and the shortcomings, e.g. low brightness, of these labels. Along with the advances in the research of lanthanide luminescence, and in the field of semiconductors, these materials are becoming a feasible alternative for the signal generation also in the future POC assays. The aim of this thesis was to explore ways of utilizing time-resolved detection or anti-Stokes detection in POC applications. The long-lived fluorescence for the time-resolved measurement can be produced with lanthanide chelates. The ultraviolet (UV) excitation required by these chelates is cumbersome to produce with POC compatible fluorescence readers. In this thesis the use of a novel light-harvesting ligand was studied. This molecule can be used to excite Eu(III)-ions at wavelengths extending up to visible part of the spectrum. An enhancement solution based on this ligand showed a good performance in a proof-of-concept -bioaffinity assay and produced a bright signal upon 365 nm excitation thanks to the high molar absorptivity of the chelate. These features are crucial when developing miniaturized readers for the time-resolved detection of fluorescence. Upconverting phosphors (UCPs) were studied as an internal light source in glucose-sensing dry chemistry test strips and ways of utilizing their various emission wavelengths and near-infrared excitation were explored. The use of nanosized NaYF :Yb3+,Tm3+-particles enabled the replacement of an external UV-light source with a NIR-laser and gave an additional degree of freedom in the optical setup of the detector instrument. The new method enabled a blood glucose measurement with results comparable to a current standard method of measuring reflectance. Microsized visible emitting UCPs were used in a similar manner, but with a broad absorbing indicator compound filtering the excitation and emission wavelengths of the UCP. This approach resulted in a novel way of benefitting from the non-linear relationship between the excitation power and emission intensity of the UCPs, and enabled the amplification of the signal response from the indicator dye.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kvantitatiivinen reaaliaikainen polymeraasiketjureaktio (engl. polymerase chain reaction, PCR) on osoittautunut käyttäjäystävällisimmäksi menetelmäksi nukleiinihapposekvenssien kvantitoimisessa. Tätä menetelmää voidaan herkistää pienempien DNA-pitoisuuksien havaitsemiseen käyttämällä hyväksi aikaerotteista fluorometriaa (engl. time-resolved fluorometry, TRF) ja luminoivia lantanidileimoja, joiden fluoresenssin pitkän eliniän ansiosta emission mittaus voidaan suorittaa vasta hetki virittävän valopulssin jälkeen, jolloin lyhytikäinen taustasäteily ehtii sammua. Tuloksena saadaan korkea signaali-taustasuhde. Tämän diplomityön tarkoituksena oli rakentaa TRF:än pystyvä reaaliaikainen PCR-laite, sillä tällaista laitetta ei ole markkinoilla tarjolla. Laite rakennettiin kehittämällä lämpökierrätin ja yhdistämällä se valmiiseen TRF:än kykenevään mittapäähän. Mittapään ja lämpökierrättimen hallitsemiseksi kehitettiin myös tietokoneohjelma. Valon tuottamiseksi ja mittaamiseksi haluttiin käyttää edullisia komponentteja, joten työssä käytettiin valmiin mittapään optiikkaa, jossa viritys tapahtuu hohtodiodilla (engl. light-emitting diode, LED) ja lantanidileiman emission mittaus fotodiodilla (engl. photodiode, PD) tai valomonistinputkella (engl. photomultiplier tube, PMT). Myös mittapään suorituskykyä tutkittiin. Työtä varten kehitettiin lämpökierrätin, joka koostui Peltier-elementillä lämmitettävästä PCR-putkitelineestä ja lämpökannesta. Mittalaitteen suorituskyvyn tutkimiseen käytettiin kelaattikomplementaatioon perustuvaa PCR-tuotteen havaitsemismenetelmää. Kelaattikomplementaatio perustuu kahteen erilliseen oligonukleotidimolekyyliin, joista toiseen on sidottu lantanidi-ioni ja toiseen valoa absorboiva ligandirakenne, jotka yhdessä muodostavat fluoresoivan kokonaisuuden. Kehitetyn lämpökierrättimen todettiin olevan tarpeeksi tarkka sekä tehokas ja sen lämmitys- ja jäähdytysnopeuden maksimeiksi saatiin 2,6 °C/sekunti. Detektorina käytetyn PD:n ei todettu olevan tarpeeksi herkkä emission havainnoimiseksi ja se korvattiin laitteessa PMT:llä. Käytetyllä PCR-määrityksellä kynnyssykleiksi (engl. threshold cycle, Ct) sekä kehitetylle että referenssilaitteelle saatiin 28,4 käyttämällä samaa 100 000 kopion DNA:n aloitusmäärää. Työssä osoitettiin, että on mahdollista kehittää edullisia komponentteja käyttävä, TRF:än pystyvä, reaaliaikainen PCR-laite, joka kykenee vastaavaan Ct-arvoon kuin vertailulaite. PD:n herkkyys ei kuitenkaan riittänyt. Tulokset olivat lupaavia, sillä LED- ja PD-teknologiat kehittyvät ja markkinoille on tullut myös muita komponentteja, joiden avulla on tulevaisuudessa mahdollista kehittää vielä herkempi laite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poikilohydric organisms have developed mechanisms to protect their photosynthetic machinery during times of desiccation. In hydrated conditions nonphotochemical quenching (NPQ) mechanisms are able to safely dissipate excess excitation energy as heat, but mechanisms of NPQ associated with desiccation tolerance are still largely unclear. In the lichen Parmelia sulcata, photosystem protection has been associated with an energy quenching energetically coupled to PSII and characterized by a fast-fluorescence decay lifetime, and long-wavelength emission. The present study compares the relative ability of green algae and lichens to recover photosynthetic activity after periods of desiccation using steady state fluorescence emission spectroscopy, and picosecond time-resolved fluorescence decay measurements. It was determined that desiccation induced quenching involves an antenna quenching mechanism with similar characteristics appearing in both P. sulcata and green algae. Algae isolated from lichens suggest symbiosis in the lichen appears to enhance this naturally occurring phenomenon and provide greater protection during desiccation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two time-resolved EPR techniques, have been used to study the light induced electron transfer(ET) in Type I photosynthetic reaction centers(RCs). First, pulsed EPR was used to compare PsaA-M688H and PsaB-M668H mutants of Chlamydomonas reinhardtii and Synechosystis sp. PCC 6803.The out-of-phase echo modulation curves combined with other EPR and optical data show that the effect of the mutations is species dependent. Second, transient and pulsed EPR data are presented which show that PsaA-A660N and PsaB-A640N mutations in C. reinhardtii alter the relative quantum yield of ET in the A- and B-branches of PS I. Third, transient EPR studies on RCs from Heliobacillus mobilis that have been exposed to oxygen show partial inhibition of ET. In the RCs in which ET still occurs, the ET kinetics and EPR spectra show evidence of oxidation of some but not all of the, BChl g and BChl g' to Chl a.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les siliciures métalliques constituent un élément crucial des contacts électriques des transistors que l'on retrouve au coeur des circuits intégrés modernes. À mesure qu'on réduit les dimensions de ces derniers apparaissent de graves problèmes de formation, liés par exemple à la limitation des processus par la faible densité de sites de germination. L'objectif de ce projet est d'étudier les mécanismes de synthèse de siliciures métalliques à très petite échelle, en particulier le NiSi, et de déterminer l’effet de l’endommagement du Si par implantation ionique sur la séquence de phase. Nous avons déterminé la séquence de formation des différentes phases du système Ni-Si d’échantillons possédant une couche de Si amorphe sur lesquels étaient déposés 10 nm de Ni. Celle-ci a été obtenue à partir de mesures de diffraction des rayons X résolue en temps et, pour des échantillons trempés à des températures critiques du processus, l’identité des phases et la composition et la microstructure ont été déterminées par mesures de figures de pôle, spectrométrie par rétrodiffusion Rutherford et microscopie électronique en transmission (TEM). Nous avons constaté que pour environ la moitié des échantillons, une réaction survenait spontanément avant le début du recuit thermique, le produit de la réaction étant du Ni2Si hexagonal, une phase instable à température de la pièce, mélangée à du NiSi. Dans de tels échantillons, la température de formation du NiSi, la phase d’intérêt pour la microélectronique, était significativement abaissée.