974 resultados para Staphylococcus warneri
Resumo:
RESUME Staphylococcus aureus est un important pathogène à gram-positif, à la fois responsable d'infections nosocomiales et communautaires. Le S. aureus résistant à la méthicilline est intrinsèquement résistant aux bêta-lactamines, inhibiteurs de la synthèse de la paroi bactérienne, grâce à une enzyme nouvellement acquise, la protéine liant la pénicilline 2A, caractérisée par une faible affinité pour ces agents et pouvant poursuivre la synthèse de la paroi, alors que les autres enzymes sont bloquées. Ce micro-organisme a également développé des résistances contre quasiment tous les antibiotiques couramment utilisés en clinique. Parallèlement au développement de molécules entièrement nouvelles, il peut être utile d'explorer d'éventuelles caractéristiques inattendues de médicaments déjà existants, par exemple en les combinant, dans l'espoir d'un potentiel effet synergique. Comprendre les mécanismes de tels effets synergiques pourrait contribuer à la justification de leur utilisation clinique potentielle. Récemment, un effet synergique contre le S. aureus résistant à la méthicilline a été décrit entre la streptogramine quinupristine-datfopristine et les bêta-lactamines, aussi bien in vitro qu'in vivo. Le présent travail a pour but de proposer un modèle pour le mécanisme de cette interaction positive et de l'étendre à d'autres classes d'antibiotiques. Premièrement, un certain nombre de méthodes microbiologiques ont permis de mieux cerner la nature de cette interaction, en montrant qu'elle agissait spécifiquement sur le S. aureus résistant à la méthicilline et qu'elle était restreinte à l'association entre inhibiteurs de la synthèse des protéines et bêta-lactamines. Deuxièmement, L'observation de l'influence des inhibiteurs de la synthèse des protéines sur la machinerie de la paroi bactérienne, c'est-à-dire sur l'expression des protéines liant la pénicilline, responsables de la synthèse du peptidoglycan, a montré une diminution de la quantité de ta protéine liant la pénicilline 2, connue pour posséder une activité de transglycosylation, indispensable au bon fonctionnement de la protéine liant la pénicilline 2A, responsable de la résistance à la méthicilline. Troisièmement, l'analyse fine de la composition du peptidoglycan extrait de bactéries, avant ou après traitement par des inhibiteurs de la synthèse des protéines, a montré des altérations corrélant avec leur capacité à agir en synergie avec les bêta-lactamines contre S. aureus résistant à ta méthicilline. Ces altérations dans les muropeptides pourraient représenter une signature de la diminution de la quantité de la protéine liant la pénicilline 2. Le modèle mécanistique retenu considère que les inhibiteurs de la synthèse des protéines pourraient diminuer l'expression de la protéine Liant la pénicilline 2, indispensable à la résistance à la méthiciltine, et que ce déséquilibre dans les enzymes synthétisant la paroi bactérienne pourrait générer une signature dans les muropeptides. SUMMARY Staphylococcus aureus is a major gram-positive pathogen causing both hospital-acquired and community-acquired infections. Methicillin- resistant Staphylococcus aureus is intrinsically resistant to the cell wall inhibitors beta-lactams by virtue of a newly acquired cell-wall-building enzyme, tow-affinity penicillin-binding protein 2A, which can build the wall when other penicillin-binding proteins are blocked. Moreover, the microorganism has developed resistance to virtually all non-experimental antibiotics. In addition of producing entirely new molecules, it is useful to explore unexpected features of existing drugs, for example by using them in combination, expecting drug synergisms. Understanding the mechanisms of such synergisms would help justify their putative clinical utilization. Recently, a synergism between the streptogramin quinupristin-dalfopristin and beta-lactams was reported against methicillin-resistant S. aureus, both in vitro and in vivo. The present work intends to propose a model for the mechanism of this positive interaction and to extend it to other drug classes. First, microbiological experimentation helped better defining the nature of this interaction, restricting it to methicillin-resistant S. aureus, and to the association of protein synthesis inhibitors with beta-lactams. Second, the observation of inhibitors of protein synthesis influence on the cell-wall-building machinery, i.e. on the expression of penicillin-binding proteins responsible for peptidoglycan synthesis, showed a decrease in the amount of penicillin-binding protein 2, known to provide a transglycosylase activity for glycan chain elongation, indispensable for the functionality of the low-affinity penicillin-binding protein 2A responsible for methicillin resistance. Third, the fine analysis of the peptidoglycan composition purified from bacteria before or after treatment with inhibitors of protein synthesis showed alterations that correlated with their ability to synergize with beta-lactams against methicillin-resistant S. aureus. These muropeptide alterations could be the signature of decrease in the amount of penicillin-binding protein 2. The retained mechanistic model is that inhibitors of protein synthesis could decrease the expression of penicillin-binding protein 2, wich is indispensable for methicillin-resistance, and that this imbalance in cell-wall-building enzymes could generate a muropeptide signature.
Resumo:
Levofloxacin is the L isomer of ofloxacin, a racemic mixture in which the L stereochemical form carries the antimicrobial activity. Levofloxacin is more active than former quinolones against gram-positive bacteria, making it potentially useful against such pathogens. In this study, levofloxacin was compared to ciprofloxacin, flucloxacillin, and vancomycin for the treatment of experimental endocarditis due to two methicillin-susceptible Staphylococcus aureus (MSSA) and two methicillin-resistant S. aureus (MRSA) isolates. The four test organisms were susceptible to ciprofloxacin, the levofloxacin MICs for the organisms were low (0.12 to 0.25 mg/liter), and the organisms were killed in vitro by drug concentrations simulating both the peak and trough levels achieved in human serum (5 and 0.5 mg/liter, respectively) during levofloxacin therapy. Rats with aortic endocarditis were treated for 3 days. Antibiotics were injected with a programmable pump to simulate the kinetics of either levofloxacin (350 mg orally once a day), ciprofloxacin (750 mg orally twice a day), flucloxacillin (2 g intravenously four times a day), or vancomycin (1 g intravenously twice a day). Levofloxacin tended to be superior to ciprofloxacin in therapeutic experiments (P = 0.08). More importantly, levofloxacin did not select for resistance in the animals, in contrast to ciprofloxacin. The lower propensity of levofloxacin than ciprofloxacin to select for quinolone resistance was also clearly demonstrated in vitro. Finally, the effectiveness of this simulation of oral levofloxacin therapy was at least equivalent to that of standard treatment for MSSA or MRSA endocarditis with either flucloxacillin or vancomycin. This is noteworthy, because oral antibiotics are not expected to succeed in the treatment of severe staphylococcal infections. These good results obtained with animals suggest that levofloxacin might deserve consideration for further study in the treatment of infections due to ciprofloxacin-susceptible staphylococci in humans.
Resumo:
We analysed the antimicrobial susceptibility, biofilm formation and genotypic profiles of 27 isolates of Staphylococcus haemolyticus obtained from the blood of 19 patients admitted to a hospital in Rio de Janeiro, Brazil. Our analysis revealed a clinical significance of 36.8% and a multi-resistance rate of 92.6% among these isolates. All but one isolate carried the mecA gene. The staphylococcal cassette chromosome mec type I was the most prevalent mec element detected (67%). Nevertheless, the isolates showed clonal diversity based on pulsed-field gel electrophoresis analysis. The ability to form biofilms was detected in 66% of the isolates studied. Surprisingly, no icaAD genes were found among the biofilm-producing isolates.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2’. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.
Resumo:
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.
Resumo:
Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, can be regarded as potential reservoirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus. The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following different types of MLSB resistance:ermA, ermB, ermC,msrA, mphC, and linA/A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistantS. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination wasermC, mphC, linA/A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S. epidermidis generally coexist, often without the phenotypic expression of each of them.
Resumo:
INTRODUCTION Statins have pleiotropic effects that could influence the prevention and outcome of some infectious diseases. There is no information about their specific effect on Staphylococcus aureus bacteremia (SAB). METHODS A prospective cohort study including all SAB diagnosed in patients aged ≥18 years admitted to a 950-bed tertiary hospital from March 2008 to January 2011 was performed. The main outcome variable was 14-day mortality, and the secondary outcome variables were 30-day mortality, persistent bacteremia (PB) and presence of severe sepsis or septic shock at diagnosis of SAB. The effect of statin therapy at the onset of SAB was studied by multivariate logistic regression and Cox regression analysis, including a propensity score for statin therapy. RESULTS We included 160 episodes. Thirty-three patients (21.3%) were receiving statins at the onset of SAB. 14-day mortality was 21.3%. After adjustment for age, Charlson index, Pitt score, adequate management, and high risk source, statin therapy had a protective effect on 14-day mortality (adjusted OR = 0.08; 95% CI: 0.01-0.66; p = 0.02), and PB (OR = 0.89; 95% CI: 0.27-1.00; p = 0.05) although the effect was not significant on 30-day mortality (OR = 0.35; 95% CI: 0.10-1.23; p = 0.10) or presentation with severe sepsis or septic shock (adjusted OR = 0.89; CI 95%: 0.27-2.94; p = 0.8). An effect on 30-day mortality could neither be demonstrated on Cox analysis (adjusted HR = 0.5; 95% CI: 0.19-1.29; p = 0.15). CONCLUSIONS Statin treatment in patients with SAB was associated with lower early mortality and PB. Randomized studies are necessary to identify the role of statins in the treatment of patients with SAB.
Resumo:
The HtrA surface protease is involved in the virulence of many pathogens, mainly by its role in stress resistance and bacterial survival. Staphylococcus aureus encodes two putative HtrA-like proteases, referred to as HtrA(1) and HtrA(2). To investigate the roles of HtrA proteins in S. aureus, we constructed htrA(1), htrA(2), and htrA(1) htrA(2) insertion mutants in two genetically different virulent strains, RN6390 and COL. In the RN6390 context, htrA(1) inactivation resulted in sensitivity to puromycin-induced stress. The RN6390 htrA(1) htrA(2) mutant was affected in the expression of several secreted virulence factors comprising the agr regulon. This observation was correlated with the disappearance of the agr RNA III transcript in the RN6390 htrA(1) htrA(2) mutant. The virulence of this mutant was diminished in a rat model of endocarditis. In the COL context, both HtrA(1) and HtrA(2) were essential for thermal stress survival. However, only HtrA(1) had a slight effect on exoprotein expression. The htrA mutations did not diminish the virulence of the COL strain in the rat model of endocarditis. Our results indicate that HtrA proteins have different roles in S. aureus according to the strain, probably depending on specific differences in the regulation of virulence factor and stress protein expression. We propose that HtrA(1) and HtrA(2) contribute to pathogenicity by controlling the production of certain extracellular factors that are crucial for bacterial dissemination, as revealed in the RN6390 background. We speculate that HtrA proteins act in the agr-dependent regulation pathway by assuring folding and/or maturation of some surface components of the agr system.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infections worldwide. To differentiate reliably among S. aureus isolates, we recently developed double locus sequence typing (DLST) based on the analysis of partial sequences of clfB and spa genes. In the present study, we evaluated the usefulness of DLST for epidemiological investigations of MRSA by routinely typing 1242 strains isolated in Western Switzerland. Additionally, particular local and international collections were typed by pulsed field gel electrophoresis (PFGE) and DLST to check the compatibility of DLST with the results obtained by PFGE, and for international comparisons. Using DLST, we identified the major MRSA clones of Western Switzerland, and demonstrated the close relationship between local and international clones. The congruence of 88% between the major PFGE and DLST clones indicated that our results obtained by DLST were compatible with earlier results obtained by PFGE. DLST could thus easily be incorporated in a routine surveillance procedure. In addition, the unambiguous definition of DLST types makes this method more suitable than PFGE for long-term epidemiological surveillance. Finally, the comparison of the results obtained by DLST, multilocus sequence typing, PFGE, Staphylococcal cassette chromosome mec typing and the detection of Panton-Valentine leukocidin genes indicated that no typing scheme should be used on its own. It is only the combination of data from different methods that gives the best chance of describing precisely the epidemiology and phylogeny of MRSA.
Resumo:
OBJECTIVES: Laboratory detection of vancomycin-intermediate Staphylococcus aureus (VISA) and their heterogeneous VISA (hVISA) precursors is difficult. Thus, it is possible that vancomycin failures against supposedly vancomycin-susceptible S. aureus are due to undiagnosed VISA or hVISA. We tested this hypothesis in experimental endocarditis.¦METHODS: Rats with aortic valve infection due to the vancomycin-susceptible (MIC 2 mg/L), methicillin-resistant S. aureus M1V2 were treated for 2 days with doses of vancomycin that mimicked the pharmacokinetics seen in humans following intravenous administration of 1 g of the drug every 12 h. Half of the treated animals were killed 8 h after treatment arrest and half 3 days thereafter. Population analyses were done directly on vegetation homogenates or after one subculture in drug-free medium to mimic standard diagnostic procedures.¦RESULTS: Vancomycin cured 14 of 26 animals (54%; P<0.05 versus controls) after 2 days of treatment. When vegetation homogenates were plated directly on vancomycin-containing plates, 6 of 13 rats killed 8 h after treatment arrest had positive cultures, 1 of which harboured hVISA. Likewise, 6 of 13 rats killed 3 days thereafter had positive valve cultures, 5 of which harboured hVISA. However, one subculture of vegetations in drug-free broth was enough to revert all the hVISA phenotypes to the susceptible pattern of the parent. Thus, vancomycin selected for hVISA during therapy of experimental endocarditis due to vancomycin-susceptible S. aureus. These hVISA were associated with vancomycin failure. The hVISA phenotype persisted in vivo, even after vancomycin arrest, but was missed in vitro after a single passage of the vegetation homogenate on drug-free medium.¦CONCLUSIONS: hVISA might escape detection in clinical samples if they are subcultured before susceptibility tests.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
O estudo teve como objetivo avaliar as condições microbiológicas de colchões caixa de ovo em uso hospitalar com a finalidade de identificar a presença de Staphylococcus aureus e seu fenótipo de resistência à meticilina (MRSA). Coletaram-se as amostras microbiológicas nos colchões por meio de placas de contato PetrifilmTM em posições pré-estabelecidas. Totalizou-se 180 placas coletadas em 15 colchões, das quais 139 (72,2%) foram positivas para Staphylococcus aureus. Desse total, 77 (55,4%) e 62 (44,6%) corresponderam respectivamente à coleta antes e após a lavagem dos colchões. Evidenciou-se redução significante (p=0,023) das Unidades Formadoras de Colônias (UFC), entretanto com relação ao perfil de resistência foi identificado 8 (53,3%) colchões com MRSA. Diante dos resultados, pode-se inferir sobre o risco destes colchões atuarem como reservatórios secundários na cadeia de infecção, especialmente no que se refere à presença de MRSA.
Resumo:
The utility of sequencing a second highly variable locus in addition to the spa gene (e.g., double-locus sequence typing [DLST]) was investigated to overcome limitations of a Staphylococcus aureus single-locus typing method. Although adding a second locus seemed to increase discriminatory power, it was not sufficient to definitively infer evolutionary relationships within a single multilocus sequence type (ST-5).