976 resultados para Spring Valley Water Company (Calif.)
Resumo:
This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.
Resumo:
Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats.
Resumo:
Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.
Resumo:
Digital maps of the shallow (<~30m deep) coral reef ecosystems of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery acquired between 2004 and 2006. Reef ecosystem features were digitized directly into a Geographic Information System. Benthic features were categorized according to a classification scheme with attributes including zone (location such as lagoon or forereef, etc.), structure (bottom type such as sand or patch reef, etc.) and percent hard bottom. This atlas consists of 27 detailed maps displaying reef zone and structure of coral ecosystems around Majuro. Adjacent maps in the atlas overlap slightly to ensure complete coverage. Maps and associated products can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications. Maps are not to be used for navigation.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) initiated a coral reef research program in 1999 to map, assess, inventory, and monitor U.S. coral reef ecosystems (Monaco et al. 2001). These activities were implemented in response to requirements outlined in the Mapping Implementation Plan developed by the Mapping and Information Synthesis Working Group (MISWG) of the Coral Reef Task Force (CRTF) (MISWG 1999). As part of the MISWG of the CRTF, NOS' Biogeography Branch has been charged with the development and implementation of a plan to produce comprehensive digital coral-reef ecosystem maps for all U.S. States, Territories, and Commonwealths within five to seven years. Joint activities between Federal agencies are particularly important to map, research, monitor, manage, and restore coral reef ecosystems. In response to the Executive Order 13089 and the Coral Reef Conservation Act of 2000, NOS is conducting research to digitally map biotic resources and coordinate a long-term monitoring program that can detect and predict change in U.S. coral reefs, and their associated habitats and biological communities. Most U.S. coral reef resources have not been digitally mapped at a scale or resolution sufficient for assessment, monitoring, and/or research to support resource management. Thus, a large portion of NOS' coral reef research activities has focused on mapping of U.S. coral reef ecosystems. The map products will provide the fundamental spatial organizing framework to implement and integrate research programs and provide the capability to effectively communicate information and results to coral reef ecosystem managers. Although the NOS coral program is relatively young, it has had tremendous success in advancing towards the goal to protect, conserve, and enhance the health of U.S. coral reef ecosystems. One objective of the program was to create benthic habitat maps to support coral reef research to enable development of products that support management needs and questions. Therefore this product was developed in collaboration with many U.S. Pacific Territory partners. An initial step in producing benthic habitat maps was the development of a habitat classification scheme. The purpose of this document is to outline the benthic habitat classification scheme and protocols used to map American Samoa, Guam and the Commonwealth of the Northern Mariana Islands. Thirty-two distinct benthic habitat types (i.e., four major and 14 detailed geomorphological structure classes; eight major and 18 detailed biological cover types) within eleven zones were mapped directly into a geographic information system (GIS) using visual interpretation of orthorectified IKONOS satellite imagery. Benthic features were mapped that covered an area of 263 square kilometers. In all, 281 square kilometers of unconsolidated sediment, 122 square kilometers of submerged vegetation, and 82.3 square kilometers of coral reef and colonized hardbottom were mapped.
Resumo:
Tullow Oil plc is to launch an onshore Early Production System (EPS) of oil drilling rated at 4,000 barrels of oil per day by 2009. The location of the EPS is in the Kaiso-Tonya area of Block 2 Oil Exploration Zone along Lake Albert within the Albertine graben. Tullow Oil plc contracted Environmental Resources Management (ERM) Southern Africa (Pty) Ltd in conjunction with Environmental Assessment Consult Limited (EACL) to undertake an Environmental Impact Assessment (EIA) for pre-construction and operation of the proposed EPS. ERM in association with EACL requested National Fisheries Resources Research Institute (NaFIRRI) to conduct a baseline survey of water quality and invertebrates in River Hohwa. This study was requested as part of an earlier baseline survey conducted at the Kaiso-Ngassa spit oil exploration area in Block 2. It was conducted at five selected sites (Fig. 1 & Table 1) within the Hohwa River basin in the Kaiso-Tonya Exploration Area 2. The study was pertinent because the targeted oil wells for EPS are upstream this river which drains the Kaiso-Ngassa valley into Ngassa lagoon.
Resumo:
Salinity, fresh water and sea level data from the Negombo Lagoon with respect to oceanic sea level and salinity data were considered. The open ocean spring tidal range was 0.57 m, whereas the neap tidal range was 0.10 m. In lagoon, the corresponding spring tidal range was 0.13 m and neap tidal range is 0.05 m. The lagoon tide was strongly choked because of the restricted inlet channel, through which only a limited water exchange could take place over a tidal cycle. Mean water exchange and the residence times for variable fresh water supplies were calculated. These calculations were based on fortnightly measurements of salinity and river discharges in 1993. During this year, salinity varied from 30-5‰ depending on the river inputs which were 20-225 m³ sˉ¹. Corresponding residence times varied from 11-2 days and the tide is dominated the exchange during low discharges of freshwater.
Resumo:
This present work study on water quality and benthic Macro invertebrate in Gorganrood, river. The research was carried out at 6 sampling site and the abundance and diversity of benthos were monitored along the length of river between 2007_2008_14 families were recorded in phyla, namely Annelidae, Mollusca,.... The greatest number of species was at 1 st station and the least number was at 6th station. The upper section supported more diverse community then the lower section. A low macro invertebrate abundance was observed during spring as a result of heavy rainfall and flood, and generally in all lowest section because of high valve of nitrogen and other nutrients. Water physiochemical parameters such as Phosphate, Nitrate,TPS and others were measured and water quality were studied through different indices such as saprobic system, Helsinhoff (FBI), BMWP and the results were compared and evaluated by physical chemical and parameters. The result indicated that the water quality in the up stream and the middle were good to fair, but the down stream qualities were pour at all sites.
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
In China, especially in Three-Gorges Reservoir, our knowledge of the algal growth potential and nutrient limitation was still limited. In the spring of 2006, the water column ratios of total nitrogen/total phosphorus were investigated and algal bioassays performed to determine algal growth potential of waters and nutrient limitation of mainstream and Xiangxi Bay of Three-Gorges Reservoir. The results showed sampling sites in mainstream were co-limited by N and P or P-limited alone, and sites in Xiangxi Bay were N-limited alone. Fe likely played an important role in determining the appearance and disappearance of algal blooms of Three-Gorges Reservoir. Native algae, Pseudokirchneriella subcapitata and Cyclotella meneghiniana, had high growth potential in Three-Gorges Reservoir.
Spring Diatom Blooming Phases in a Representative Eutrophic Bay of the Three-Gorges Reservoir, China
Resumo:
We investigated dynamics of the phytoplankton community and abiotic factors in Xiangxi Bay of the Three-Gorge Reservoir, China, by daily sampling, a specific site during a spring algal bloom (February 23-April 28, 2005). Among the 76 taxa observed, Asterionella formosa and Cyclotella spp. were the dominants, accounting for 47.2% and 29.9% of the total abundance, respectively. We determined the five distinct developing phases of the bloom by analyzing the dissimilarity of physicochemical parameters. Simultaneously, six phytoplankton community groups were distinguished by TWINSPAN classifications. The pattern for algal community succession was similar to that for the bloom phase shift, and the structural complexity of communities significantly decreased over time. Water temperature and silicate were the main factors that related to the development of the bloom and the shifts of the phytoplankton community.
Resumo:
The concentrations of alkylphenols (APs) were investigated in water, sediments and submersed macrophytes from the Moon Lake, Wuhan city, China. The water samples contained APs, ranging up to 26.4 mu g l(-1) for nonylphenol (NP) and 0.68 mu g l(-1) for octylphenol (OP). APs were found in the sediment samples with concentrations ranging from 4.08 to 14.8 for NP and from 0.22 to 1.25 mu g l(-1) dry weight for OP. The samples from the site near former sewage inlet showed the highest concentrations of APs in both water and sediments. The results of distribution pattern and dynamics of NP and OP in submersed macrophytes of the Moon Lake showed that the two pollutants were all found in Myriophyllum verticillatum, Elodea nuttallii, Ceratophyllum oryzetorum, and Potamageton crispus collected from the Moon Lake. For NP, M. verticillatum had the highest capacity of accumulation, followed by E. nuttallii, C. oryzetorum and P. crispus. However the distribution pattern of OP differed from that of NP, and the highest amount of accumulation was observed in E. nuttallii, followed by M. verticillatum, P. crispus, and C. oryzetorum. The temporal pattern of APs was also observed in submersed macrophytes from March to May, and the highest accumulation period was in May. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Population dynamics of the water mite Unionicola arcuata were investigated in the freshwater bivalve Cristaria plicata during the period from January to December 2002 in Poyang Lake, East China. A pattern of seasonal variation was observed, with prevalence and abundance peaking in early spring and autumn. The number of mites in individual hosts was significantly correlated with the size, but not with the sex, of bivalves. The change in infection level of mites on different infection sites in C. plicata was significant, with > 58% of the mites found on the outer and inner gills, indicating that U. arcuata shows site preference.
Resumo:
In this study, the seasonal, vertical distribution of various phosphorus and nitrogen forms in the sediment and overlying water of Donghu Lake were investigated. The concentration of total nitrogen (TN) in overlying water was high in spring and autumn, but that of NO3--N reached its peak in autumn. From summer to autumn and from winter to spring, the concentration of phosphorus in overlying water decreased, while it increased from autumn to winter. Vertical characteristic forms of phosphorus in sediment cores are total phosphorus (TP), labile phosphorus (LP), Fe-P and Al-P, obviously enriched in the surface layer (0-10 cm), but their concentrations are observably reduced along with the depth of sediment. The research is of important theoretical and practical value to understand the status and to control the developmental trend of eutrophication in Donghu Lake.