987 resultados para Solving Equations
Resumo:
Small element spacing in compact arrays results in strong mutual coupling between the array elements. A decoupling network consisting of reactive cross-coupling elements can alleviate problems associated with the coupling. Closed-form design equations for the decoupling networks of symmetrical arrays with two or three elements are presented.
Resumo:
Mathematical problem solving has been the subject of substantial and often controversial research for several decades. We use the term, problem solving, here in a broad sense to cover a range of activities that challenge and extend one’s thinking. In this chapter, we initially present a sketch of past decades of research on mathematical problem solving and its impact on the mathematics curriculum. We then consider some of the factors that have limited previous research on problem solving. In the remainder of the chapter we address some ways in which we might advance the fields of problem-solving research and curriculum development.
Resumo:
This study reported on the issues surrounding the acquisition of problem-solving competence of middle-year students who had been ascertained as above average in intelligence, but underachieving in problem-solving competence. In particular, it looked at the possible links between problem-posing skills development and improvements in problem-solving competence. A cohort of Year 7 students at a private, non-denominational, co-educational school was chosen as participants for the study, as they undertook a series of problem-posing sessions each week throughout a school term. The lessons were facilitated by the researcher in the students’ school setting. Two criteria were chosen to identify participants for this study. Firstly, each participant scored above the 60th percentile in the standardized Middle Years Ability Test (MYAT) (Australian Council for Educational Research, 2005) and secondly, the participants all scored below the cohort average for Criterion B (Problem-solving Criterion) in their school mathematics tests during the first semester of Year 7. Two mutually exclusive groups of participants were investigated with one constituting the Comparison Group and the other constituting the Intervention Group. The Comparison Group was chosen from a Year 7 cohort for whom no problem-posing intervention had occurred, while the Intervention Group was chosen from the Year 7 cohort of the following year. This second group received the problem-posing intervention in the form of a teaching experiment. That is, the Comparison Group were only pre-tested and post-tested, while the Intervention Group was involved in the teaching experiment and received the pre-testing and post-testing at the same time of the year, but in the following year, when the Comparison Group have moved on to the secondary part of the school. The groups were chosen from consecutive Year 7 cohorts to avoid cross-contamination of the data. A constructionist framework was adopted for this study that allowed the researcher to gain an “authentic understanding” of the changes that occurred in the development of problem-solving competence of the participants in the context of a classroom setting (Richardson, 1999). Qualitative and quantitative data were collected through a combination of methods including researcher observation and journal writing, video taping, student workbooks, informal student interviews, student surveys, and pre-testing and post-testing. This combination of methods was required to increase the validity of the study’s findings through triangulation of the data. The study findings showed that participation in problem-posing activities can facilitate the re-engagement of disengaged, middle-year mathematics students. In addition, participation in these activities can result in improved problem-solving competence and associated developmental learning changes. Some of the changes that were evident as a result of this study included improvements in self-regulation, increased integration of prior knowledge with new knowledge and increased and contextualised socialisation.
Resumo:
Interdisciplinary studies are fundamental to the signature practices for the middle years of schooling. Middle years researchers claim that interdisciplinarity in teaching appropriately meets the needs of early adolescents by tying concepts together, providing frameworks for the relevance of knowledge, and demonstrating the linking of disparate information for solution of novel problems. Cognitive research is not wholeheartedly supportive of this position. Learning theorists assert that application of knowledge in novel situations for the solution of problems is actually dependent on deep discipline based understandings. The present research contrasts the capabilities of early adolescent students from discipline based and interdisciplinary based curriculum schooling contexts to successfully solve multifaceted real world problems. This will inform the development of effective management of middle years of schooling curriculum.
Resumo:
In this paper, the authors propose a new structure for the decoupling of circulant symmetric arrays of more than four elements. In this case, network element values are again obtained through a process of repeated eigenmode decoupling, here by solving sets of nonlinear equations. However, the resulting circuit is much simpler and can be implemented on a single layer. The corresponding circuit topology for the 6-element array is displayed in figure diagrams. The procedure will be illustrated by considering different examples.
Resumo:
The capacity to solve tasks that contain high concentrations of visual-spatial information, including graphs, maps and diagrams, is becoming increasingly important in educational contexts as well as everyday life. This research examined gender differences in the performance of students solving graphics tasks from the Graphical Languages in Mathematics (GLIM) instrument that included number lines, graphs, maps and diagrams. The participants were 317 Australian students (169 males and 148 females) aged 9 to 12 years. Boys outperformed girls on graphical languages that required the interpretation of information represented on an axis and graphical languages that required movement between two- and three-dimensional representations (generally Map language).
Resumo:
This thesis is devoted to the study of linear relationships in symmetric block ciphers. A block cipher is designed so that the ciphertext is produced as a nonlinear function of the plaintext and secret master key. However, linear relationships within the cipher can still exist if the texts and components of the cipher are manipulated in a number of ways, as shown in this thesis. There are four main contributions of this thesis. The first contribution is the extension of the applicability of integral attacks from word-based to bitbased block ciphers. Integral attacks exploit the linear relationship between texts at intermediate stages of encryption. This relationship can be used to recover subkey bits in a key recovery attack. In principle, integral attacks can be applied to bit-based block ciphers. However, specific tools to define the attack on these ciphers are not available. This problem is addressed in this thesis by introducing a refined set of notations to describe the attack. The bit patternbased integral attack is successfully demonstrated on reduced-round variants of the block ciphers Noekeon, Present and Serpent. The second contribution is the discovery of a very small system of equations that describe the LEX-AES stream cipher. LEX-AES is based heavily on the 128-bit-key (16-byte) Advanced Encryption Standard (AES) block cipher. In one instance, the system contains 21 equations and 17 unknown bytes. This is very close to the upper limit for an exhaustive key search, which is 16 bytes. One only needs to acquire 36 bytes of keystream to generate the equations. Therefore, the security of this cipher depends on the difficulty of solving this small system of equations. The third contribution is the proposal of an alternative method to measure diffusion in the linear transformation of Substitution-Permutation-Network (SPN) block ciphers. Currently, the branch number is widely used for this purpose. It is useful for estimating the possible success of differential and linear attacks on a particular SPN cipher. However, the measure does not give information on the number of input bits that are left unchanged by the transformation when producing the output bits. The new measure introduced in this thesis is intended to complement the current branch number technique. The measure is based on fixed points and simple linear relationships between the input and output words of the linear transformation. The measure represents the average fraction of input words to a linear diffusion transformation that are not effectively changed by the transformation. This measure is applied to the block ciphers AES, ARIA, Serpent and Present. It is shown that except for Serpent, the linear transformations used in the block ciphers examined do not behave as expected for a random linear transformation. The fourth contribution is the identification of linear paths in the nonlinear round function of the SMS4 block cipher. The SMS4 block cipher is used as a standard in the Chinese Wireless LAN Wired Authentication and Privacy Infrastructure (WAPI) and hence, the round function should exhibit a high level of nonlinearity. However, the findings in this thesis on the existence of linear relationships show that this is not the case. It is shown that in some exceptional cases, the first four rounds of SMS4 are effectively linear. In these cases, the effective number of rounds for SMS4 is reduced by four, from 32 to 28. The findings raise questions about the security provided by SMS4, and might provide clues on the existence of a flaw in the design of the cipher.