964 resultados para Soluble Methane Monooxygenase
Resumo:
Thin films of diamond-like carbon (DLC) have been deposited using a novel photon-enhanced chemical vapour deposition (photo-CVD) method. This low energy method may be a way to produce better interfaces in electronic devices by reducing damage due to ion bombardment. Methane requires high energy photons for photolysis to take place and these are not transmitted in most photo-CVD methods owing to the presence of a window between the lamp and the deposition environment. In our photo-CVD system there is no window and all the high energy photons are transmitted into the reaction gas. Initial work has proved promising and this paper presents recent results. Films have been characterized by measuring electron energy loss spectra, by ellipsometry and by fabricating and testing diode structures. Results indicate that the films are of a largely amorphous nature and are semiconducting. Diode structures have on/off current ratios of up to 106.
Resumo:
A water soluble hygroscopic powder has been isolated from squilla in good yield, ranging from 3.5 to 5.0% of the fresh raw material, by a simple direct method. The process consists of homogenising squilla with an equal quantity of water, removal of chitinous matter from the slurry by filtration, heating the filtrate at 0.7 kg/sq.cm steam pressure for 15-20 minutes, removal of the precipitated protein by filtration and concentration and final drying in vacuum of the filtered cooled liquor. The pale brown powder so obtained consists mainly of peptones and proteoses and has been found to be comparable to BDH peptone for growth of bacteria, ability to serve as source for tryptophan for indole production and to provide substrate for the production of hydrogen sulphide. Comparative studies have been made on similar water soluble fractions from two species of prawns, namely, Metapenaeus affinis and Parapenaeopsis stylifera.
Resumo:
The method of preparation, composition, amino acid content, protein efficiency ratio and areas of possible application of water soluble protein isolates from low cost fish and fish wastes are discussed in detail in this communication.
Resumo:
PDMS based imprinting is firstly developed for patterning of rGO on a large area. High quality stripe and square shaped rGO patterns are obtained and the electrical properties of the rGO film can be adjusted by the concentration of GO suspension. The arrays of rGO electronics are fabricated from the patterned film by a simple shadow mask method. Gas sensors, which are based on these rGO electronics, show high sensitivity and recyclable usage in sensing NH 3. © 2012 The Royal Society of Chemistry.
Resumo:
A series of flames in a turbulent methane/air stratified swirl burner is presented. The degree of stratification and swirl are systematically varied to generate a matrix of experimental conditions, allowing their separate and combined effects to be investigated. Non-swirling flows are considered in the present paper, and the effects of swirl are considered in a companion paper (Part II). A mean equivalence ratio of φ=0.75 is used, with φ for the highest level of stratification spanning 0.375-1.125. The burner features a central bluff-body to aid flame stabilization, and the influence of the induced recirculation zone is also considered. The current work focuses on non-swirling flows where two-component particle image velocimetry (PIV) measurements are sufficient to characterize the main features of the flow field. Scalar data obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution allow the behavior of key combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. Simultaneous cross-planar OH-PLIF is used to determine the orientation of the instantaneous flame normal in the scalar measurement window, allowing gradients in temperature and progress variable to be angle corrected to their three dimensional values. The relationship between curvature and flame thickness is investigated using the OH-PLIF images, as well as the effect of stratification on curvature.The main findings are that the behavior of the key combustion species in temperature space is well captured on the mean by laminar flame calculations regardless of the level of stratification. H 2 and CO are significant exceptions, both appearing at elevated levels in the stratified flames. Values for surface density function and by extension thermal scalar dissipation rate are found to be substantially lower than laminar values, as the thickening of the flame due to turbulence dominates the effect of increased strain. These findings hold for both premixed and stratified flames. The current series of flames is proposed as an interesting if challenging set of test cases for existing and emerging turbulent flame models, and data are available on request. © 2012 The Combustion Institute.
Resumo:
Experimental results are presented from a series of turbulent methane/air stratified flames stabilized on a swirl burner. Nine operating conditions are considered, systematically varying the level of stratification and swirl while maintaining a lean global mean equivalence ratio of φ̄=0.75. Scalar data are obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution, allowing the behavior of the major combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. The corresponding three-dimensional surface density function and thermal scalar dissipation rate are investigated, along with geometric characteristics of the flame such as curvature and flame thickness. Hydrogen and carbon monoxide levels within the flame brush are raised by stratification, indicating models with laminar premixed flame chemistry may not be suitable for stratified flames. However, flame surface density, scalar dissipation and curvature all appear insensitive to the degree of stratification in the flames surveyed. © 2012 The Combustion Institute.
Resumo:
In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..
Resumo:
The effects of stratification on a series of highly swirling turbulent flames under globally lean conditions (φg=0.75) are investigated using a new high-spatial resolution multi-scalar dataset. This dataset features two key properties: high spatial resolution which approaches the 60 micron optical limit of the measurement system, and a wavelet oversampling methodology which significantly reduces the influence of noise. Furthermore, the very large number of realizations (30,000) acquired in the stratified cases permits statistically significant results to be obtained even after aggressive conditioning is applied. Data are doubly conditioned on equivalence ratio and the degree of stratification across the flame in each instantaneous realization. The influence of stoichiometry is limited by conditioning on the equivalence ratio at the location of peak CO mass fraction, which is shown to be a good surrogate for the location of peak heat release rate, while the stratification is quantified using a linear gradient in equivalence ratio across the instantaneous flame front. This advanced conditioning enables robust comparisons with the baseline lean premixed flame. Species mass fractions of both carbon monoxide and hydrogen are increased in temperature space under stratified conditions. Stratification is also shown to significantly increase thermal gradients, yet the derived three-dimensional flame surface density is shown to be relatively insensitive to stratification. Whilst the presence of instantaneous stratification broadens the curvature distribution relative to the premixed case, the degree of broadening is not significantly influenced by the range of global stratification ratios examined in this study. © 2012 The Combustion Institute.