845 resultados para Sociology, Theory and Methods|Psychology, Clinical
Resumo:
In this paper, we consider the transmission of confidential information over a κ-μ fading channel in the presence of an eavesdropper who also experiences κ-μ fading. In particular, we obtain novel analytical solutions for the probability of strictly positive secrecy capacity (SPSC) and a lower bound of secure outage probability (SOPL) for independent and non-identically distributed channel coefficients without parameter constraints. We also provide a closed-form expression for the probability of SPSC when the μ parameter is assumed to take positive integer values. Monte-Carlo simulations are performed to verify the derived results. The versatility of the κ-μ fading model means that the results presented in this paper can be used to determine the probability of SPSC and SOPL for a large number of other fading scenarios, such as Rayleigh, Rice (Nakagamin), Nakagami-m, One-Sided Gaussian, and mixtures of these common fading models. In addition, due to the duality of the analysis of secrecy capacity and co-channel interference (CCI), the results presented here will have immediate applicability in the analysis of outage probability in wireless systems affected by CCI and background noise (BN). To demonstrate the efficacy of the novel formulations proposed here, we use the derived equations to provide a useful insight into the probability of SPSC and SOPL for a range of emerging wireless applications, such as cellular device-to-device, peer-to-peer, vehicle-to-vehicle, and body centric communications using data obtained from real channel measurements.
Resumo:
Despite noteworthy exceptions, nursing’s literature largely disregards the ways in which social and sociological theory permeates, guides and shapes research, education, and practice. Likewise, social theory’s ability to position nursing within wider structures of healthcare and educational provision is similarly and puzzlingly downplayed. The questions nurses ask and the problems they face cannot however, adequately be addressed without engaging with social and sociological theory and, to progress this engagement, contributors to this book explore how social theories are used by and might apply to nursing and nursing practice. This work brings together leading international nursing and non-nursing scholars to stimulate thought and debate around a fascinating and enduring topic.
Resumo:
BACKGROUND: Despite their increasing popularity, little is known about how users perceive mobile devices such as smartphones and tablet PCs in medical contexts. Available studies are often restricted to evaluating the success of specific interventions and do not adequately cover the users' basic attitudes, for example, their expectations or concerns toward using mobile devices in medical settings. OBJECTIVE: The objective of the study was to obtain a comprehensive picture, both from the perspective of the patients, as well as the doctors, regarding the use and acceptance of mobile devices within medical contexts in general well as the perceived challenges when introducing the technology. METHODS: Doctors working at Hannover Medical School (206/1151, response 17.90%), as well as patients being admitted to this facility (213/279, utilization 76.3%) were surveyed about their acceptance and use of mobile devices in medical settings. Regarding demographics, both samples were representative of the respective study population. GNU R (version 3.1.1) was used for statistical testing. Fisher's exact test, two-sided, alpha=.05 with Monte Carlo approximation, 2000 replicates, was applied to determine dependencies between two variables. RESULTS: The majority of participants already own mobile devices (doctors, 168/206, 81.6%; patients, 110/213, 51.6%). For doctors, use in a professional context does not depend on age (P=.66), professional experience (P=.80), or function (P=.34); gender was a factor (P=.009), and use was more common among male (61/135, 45.2%) than female doctors (17/67, 25%). A correlation between use of mobile devices and age (P=.001) as well as education (P=.002) was seen for patients. Minor differences regarding how mobile devices are perceived in sensitive medical contexts mostly relate to data security, patients are more critical of the devices being used for storing and processing patient data; every fifth patient opposed this, but nevertheless, 4.8% of doctors (10/206) use their devices for this purpose. Both groups voiced only minor concerns about the credibility of the provided content or the technical reliability of the devices. While 8.3% of the doctors (17/206) avoided use during patient contact because they thought patients might be unfamiliar with the devices, (25/213) 11.7% of patients expressed concerns about the technology being too complicated to be used in a health context. CONCLUSIONS: Differences in how patients and doctors perceive the use of mobile devices can be attributed to age and level of education; these factors are often mentioned as contributors of the problems with (mobile) technologies. To fully realize the potential of mobile technologies in a health care context, the needs of both the elderly as well as those who are educationally disadvantaged need to be carefully addressed in all strategies relating to mobile technology in a health context.
Resumo:
Metamamterials are 1D, 2D or 3D arrays of articial atoms. The articial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
Resumo:
The diagnosis of mixed genotype hepatitis C virus (HCV) infection is rare and information on incidence in the UK, where genotypes 1a and 3 are the most prevalent, is sparse. Considerable variations in the efficacies of direct-acting antivirals (DAAs) for the HCV genotypes have been documented and the ability of DAAs to treat mixed genotype HCV infections remains unclear, with the possibility that genotype switching may occur. In order to estimate the prevalence of mixed genotype 1a/3 infections in Scotland, a cohort of 512 samples was compiled and then screened using a genotype-specific nested PCR assay. Mixed genotype 1a/3 infections were found in 3.8% of samples tested, with a significantly higher prevalence rate of 6.7% (p<0.05) observed in individuals diagnosed with genotype 3 infections than genotype 1a (0.8%). An analysis of the samples using genotypic-specific qPCR assays found that in two-thirds of samples tested, the minor strain contributed <1% of the total viral load. The potential of deep sequencing methods for the diagnosis of mixed genotype infections was assessed using two pan-genotypic PCR assays compatible with the Illumina MiSeq platform that were developed targeting the E1-E2 and NS5B regions of the virus. The E1-E2 assay detected 75% of the mixed genotype infections, proving to be more sensitive than the NS5B assay which identified only 25% of the mixed infections. Studies of sequence data and linked patient records also identified significantly more neurological disorders in genotype 3 patients. Evidence of distinctive dinucleotide expression within the genotypes was also uncovered. Taken together these findings raise interesting questions about the evolutionary history of the virus and indicate that there is still more to understand about the different genotypes. In an era where clinical medicine is frequently more personalised, the development of diagnostic methods for HCV providing increased patient stratification is increasingly important. This project has shown that sequence-based genotyping methods can be highly discriminatory and informative, and their use should be encouraged in diagnostic laboratories. Mixed genotype infections were challenging to identify and current deep sequencing methods were not as sensitive or cost-effective as Sanger-based approaches in this study. More research is needed to evaluate the clinical prognosis of patients with mixed genotype infection and to develop clinical guidelines on their treatment.
Resumo:
Esta investigación analiza el impacto del Programa de Alimentación Escolar en el trabajo infantil en Colombia a través de varias técnicas de evaluación de impacto que incluyen emparejamiento simple, emparejamiento genético y emparejamiento con reducción de sesgo. En particular, se encuentra que este programa disminuye la probabilidad de que los escolares trabajen alrededor de un 4%. Además, se explora que el trabajo infantil se reduce gracias a que el programa aumenta la seguridad alimentaria, lo que consecuentemente cambia las decisiones de los hogares y anula la carga laboral en los infantes. Son numerosos los avances en primera infancia llevados a cabo por el Estado, sin embargo, estos resultados sirven de base para construir un marco conceptual en el que se deben rescatar y promover las políticas públicas alimentarias en toda la edad escolar.
Resumo:
2016
Resumo:
Objectives: To fully re-evaluate patients with early-onset epilepsy and intellectual disability with neurological, neurophysiological and neuropsychological examination in order to contribute to expanding the phenotypic spectrum of known epileptic encephalopathy (EE)-related genes and to identify novel genetic defects underlying EEs. Methods: We recruited patients with epilepsy and intellectual disability (ID) referring to our Epilepsy Centre. Patients underwent full clinical and neurophysiologic evaluation. When possible they underwent neuroradiologic investigations. Selected cases also underwent genetic analysis. Results: We recruited 200 patients (109 M, 91 F; mean age 36 years old). Mean age at epilepsy onset was 4 years old. The degree of ID was borderline in 4.5% of patients, mild in 25%, moderate in 38% and severe in 32.5%. EEG showed epileptiform abnormalities in 79.5% of patients. One hundred and thirty-one patients out of the 200 recruited (65.5%) did not have an aetiological diagnosis. All the patients underwent full clinical reassessment and when necessary they performed neuroradiologic and genetic investigations as well. We identified 35 patients with a genetic aetiology. In 8 cases a structural brain lesion was observed. In 33 patients, a genetic aetiology was identified. In 2 patients with drug-resistant seizures video-EEG allowed the identification of non-epileptic seizures, and in one patient we discontinued anti-epileptic drugs. In these patients, the aetiological diagnosis was made after 30 years (range 9-60 years) from the disease onset. Conclusions: In a population of 200 adult patients with epilepsy and ID, an aetiological cause was identified in 45 patients after 30 years from the disease onset. Aetiological diagnosis, especially if genetic, has significant positive implications for patients, even if it has been made after years from the beginning of the disease. Benefits include better-focused antiepileptic drug (AED) choice, sparing of further unnecessary investigations and improved knowledge of comorbidities.
Resumo:
Analytics is the technology working with the manipulation of data to produce information able to change the world we live every day. Analytics have been largely used within the last decade to cluster people’s behaviour to predict their preferences of items to buy, music to listen, movies to watch and even electoral preference. The most advanced companies succeded in controlling people’s behaviour using analytics. Despite the evidence of the super-power of analytics, they are rarely applied to the big data collected within supply chain systems (i.e. distribution network, storage systems and production plants). This PhD thesis explores the fourth research paradigm (i.e. the generation of knowledge from data) applied to supply chain system design and operations management. An ontology defining the entities and the metrics of supply chain systems is used to design data structures for data collection in supply chain systems. The consistency of this data is provided by mathematical demonstrations inspired by the factory physics theory. The availability, quantity and quality of the data within these data structures define different decision patterns. Ten decision patterns are identified, and validated on-field, to address ten different class of design and control problems in the field of supply chain systems research.
Resumo:
The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).
Resumo:
Objective: The aim of this study was to report the treatment of recurrent herpes labialis (RHL) using a high-intensity laser or methylene blue (MB)-mediated photodynamic therapy (PDT) in combination with low-level laser therapy (LLLT). Materials and Methods: Four clinical cases of patients diagnosed with RHL are described in this report. Two patients were subjected to high-intensity laser therapy (HILT) followed by LLLT, and two patients received MB-mediated PDT, again followed by LLLT. LLLT was conducted at 24, 48, 72 h, and 7 d after HILT or PDT. Patients were followed up after 6 mo. Results: Throughout the follow-up period, all patients reported pain relief and did not show any signs or symptoms of RHL. A favorable healing process was observed in all cases. None of the patients reported pain as a consequence of the treatment. Conclusion: These results suggest that HILT and MB-mediated PDT, in combination with LLLT, may constitute a benefit when treating vesicles in RHL.
Resumo:
The origin of the unique geometry for nitric oxide (NO) adsorption on Pd(111) and Pt(111) surfaces as well as the effect of temperature were studied by density functional theory calculations and ab initio molecular dynamics at finite temperature. We found that at low coverage, the adsorption geometry is determined by electronic interactions, depending sensitively on the adsorption sites and coverages, and the effect of temperature on geometries is significant. At coverage of 0.25 monolayer (ML), adsorbed NO at hollow sites prefer an upright configuration, while NO adsorbed at top sites prefer a tilting configuration. With increase in the coverage up to 0.50 ML, the enhanced steric repulsion lead to the tilting of hollow NO. We found that the tilting was enhanced by the thermal effects. At coverage of 0.75 ML with p(2 x 2)-3NO(fcc+hcp+top) structure, we found that there was no preferential orientation for tilted top NO. The interplay of the orbital hybridization, thermal effects, steric repulsion, and their effects on the adsorption geometries were highlighted at the end.
Resumo:
ARTIOLI, G. G., B. GUALANO, E. FRANCHINI, F. B. SCAGLIUSI, M. TAKESIAN, M. FUCHS, and A. H. LANCHA. Prevalence, Magnitude, and Methods of Rapid Weight Loss among Judo Competitors. Med. Sci. Sports Exerc., Vol. 42, No. 3, pp. 436-442, 2010. Purpose: To identify the prevalence, magnitude, and methods of rapid weight loss among judo competitors. Methods: Athletes (607 males and 215 females; age = 19.3 +/- 5.3 yr, weight = 70 +/- 7.5 kg, height = 170.6 +/- 9.8 cm) completed a previously validated questionnaire developed to evaluate rapid weight loss in judo athletes, which provides a score. The higher the score obtained, the more aggressive the weight loss behaviors. Data were analyzed using descriptive statistics and frequency analyses. Mean scores obtained in the questionnaire were used to compare specific groups of athletes using, when appropriate, Mann-Whitney U-test or general linear model one-way ANOVA followed by Tamhane post hoc test. Results: Eighty-six percent of athletes reported that have already lost weight to compete. When heavyweights are excluded, this percentage rises to 89%. Most athletes reported reductions of up to 5% of body weight (mean +/- SD: 2.5 +/- 2.3%). The most weight ever lost was 2%-5%, whereas a great part of athletes reported reductions of 5%-10% (mean +/- SD: 6 +/- 4%). The number of reductions underwent in a season was 3 +/- 5. The reductions usually occurred within 7 +/- 7 d. Athletes began cutting weight at 12.6 +/- 6.1 yr. No significant differences were found in the score obtained by male versus female athletes as well as by athletes from different weight classes. Elite athletes scored significantly higher in the questionnaire than nonelite. Athletes who began cutting weight earlier also scored higher than those who began later. Conclusions: Rapid weight loss is highly prevalent in judo competitors. The level of aggressiveness in weight management behaviors seems to not be influenced by the gender or by the weight class, but it seems to be influenced by competitive level and by the age at which athletes began cutting weight.
Resumo:
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.