986 resultados para Single-platform Trucount Assay
Resumo:
Using a spectrophotometric assay that measures the hyperchromicity that accompanies the unwinding of a DNA duplex, we have identified an ATP-independent step in the unwinding of a herpes simplex virus type 1 (HSV-1) origin of replication, Oris, by a complex of the HSV-1 origin binding protein (UL9 protein) and the HSV-1 single-strand DNA binding protein (ICP8). The sequence unwound is the 18-bp A + T-rich segment that links the two high-affinity UL9 protein binding sites, boxes I and II of Oris. P1 nuclease sensitivity of Oris and single-strand DNA-dependent ATPase measurements of the UL9 protein indicate that, at 37°C, the A + T-rich segment is sufficiently single stranded to permit the binding of ICP8. Binding of the UL9 protein to boxes I and II then results in the formation of the UL9 protein–ICP8 complex, that can, in the absence of ATP, promote unwinding of the A + T-rich segment. On addition of ATP, the helicase activity of the UL9 protein–ICP8 complex can unwind boxes I and II, permitting access of the replication machinery to the Oris sequences.
Resumo:
The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to inhibit telomerase activity. We used a fluorescence assay to identify molecules that stabilize G-quadruplexes. Intramolecular folding of an oligonucleotide with four repeats of the human telomeric sequence into a G-quadruplex structure led to fluorescence excitation energy transfer between a donor (fluorescein) and an acceptor (tetramethylrhodamine) covalently attached to the 5′ and 3′ ends of the oligonucleotide, respectively. The melting of the G-quadruplex was monitored in the presence of putative G-quadruplex-binding molecules by measuring the fluorescence emission of the donor. A series of compounds (pentacyclic crescent-shaped dibenzophenanthroline derivatives) was shown to increase the melting temperature of the G-quadruplex by 2–20°C at 1 μM dye concentration. This increase in Tm value was well correlated with an increase in the efficiency of telomerase inhibition in vitro. The best telomerase inhibitor showed an IC50 value of 28 nM in a standard telomerase repeat amplification protocol assay. Fluorescence energy transfer can thus be used to reveal the formation of four-stranded DNA structures, and its stabilization by quadruplex-binding agents, in an effort to discover new potent telomerase inhibitors.
Resumo:
A typical G-rich telomeric DNA strand, which runs 5′→3′ toward the chromosome ends, protrudes by several nucleotides in lower eukaryotes. In human chromosomes long G-rich 3′-overhangs have been found. Apart from the standard G-rich tail, several non-canonical terminal structures have been proposed. However, the mechanism of long-tail formation, the presence and the role of these structures in telomere maintenance or shortening are not completely understood. In a search for a simple method to accurately measure the 3′-overhang we have established a protocol based on the ligation of telomeric oligonucleotide hybridized to non-denatured DNA under stringent conditions (oligonucleotide ligation assay with telomeric repeat oligonucleotide). This method enabled us to detect a large proportion of G-rich single-stranded telomeric DNA that was as short as 24 nt. Nevertheless, we showed G-tails longer than 400 nt. In all tested cells the lengths ranging from 108 to 270 nt represented only 37% of the whole molecule population, while 56–62% were <90 nt. Our protocol provides a simple and sensitive method for measuring the length of naturally occurring unpaired repeated DNA.
Resumo:
We have developed an extremely sensitive technique, termed immuno-detection amplified by T7 RNA polymerase (IDAT) that is capable of monitoring proteins, lipids, and metabolites and their modifications at the single-cell level. A double-stranded oligonucleotide containing the T7 promoter is conjugated to an antibody (Ab), and then T7 RNA polymerase is used to amplify RNA from the double-stranded oligonucleotides coupled to the Ab in the Ab-antigen complex. By using this technique, we are able to detect the p185her2/neu receptor from the crude lysate of T6–17 cells at 10−13 dilution, which is 109-fold more sensitive than the conventional ELISA method. Single-chain Fv fragments or complementarity determining region peptides of the Ab also can be substituted for the Ab in IDAT. In a modified protocol, the oligonucleotide has been coupled to an Ab against a common epitope to create a universal detector species. With the linear amplification ability of T7 RNA polymerase, IDAT represents a significant improvement over immuno-PCR in terms of sensitivity and has the potential to provide a robotic platform for proteomics.
Resumo:
MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.
Resumo:
Proliferation of dispersed plant cells in culture is strictly dependent on cell density, and cells in a low-density culture can only grow in the presence of conditioned medium (CM). No known plant hormones have been able to substitute for CM. To quantify the mitogenic activity of CM, we examined conditions for the assay system using mechanically dispersed mesophyll cells of Asparagus officinalis L. and established a highly sensitive bioassay method. By use of this method, the mitogenic activity of CM prepared from asparagus cells was characterized: it was heat-stable, susceptible to pronase digestion, and resistant to glycosidase treatment. On the basis of these results, the mitogenic activity in CM was purified 10(7)-fold by column chromatography, and two factors named phytosulfokine-alpha and -beta (PSK-alpha and PSK-beta) were obtained. By amino acid sequence analysis and mass spectrometry, the structures of these two factors were determined to be sulfated pentapeptide (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH) and sulfated tetrapeptide (H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH). PSK-alpha and PSK-beta were prepared by chemical synthesis and enzymatic sulfation. The synthetic peptides exhibited the same activity as the natural factors, confirming the structure for PSK-alpha and PSK-beta mentioned above. This is the first elucidation of the structure of a conditioned medium factor required for the growth of low-density plant cell cultures.
Resumo:
A capillary electrophoresis method has been developed to study DNA-protein complexes by mobility-shift assay. This method is at least 100 times more sensitive than conventional gel mobility-shift procedures. Key features of the technique include the use of a neutral coated capillary, a small amount of linear polymer in the separation medium, and use of covalently dye-labeled DNA probes that can be detected with a commercially available laser-induced fluorescence monitor. The capillary method provides quantitative data in runs requiring < 20 min, from which dissociation constants are readily determined. As a test case we studied interactions of a developmentally important sea urchin embryo transcription factor, SpP3A2. As little as 2-10 x 10(6) molecules of specific SpP3A2-oligonucleotide complex were reproducibly detected, using recombinant SpP3A2, crude nuclear extract, egg lysates, and even a single sea urchin egg lysed within the capillary column.
Resumo:
Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.
Resumo:
Construction of a bispecific single-chain antibody derivative is described that consists of two different single-chain Fv fragments joined through a Gly-Ser linker. One specificity of the two Fv fragments is directed against the CD3 antigen of human T cells and the other is directed against the epithelial 17-1A antigen; the latter had been found in a clinical trial to be a suitable target for antibody therapy of minimal residual colorectal cancer. The construct could be expressed in CHO cells as a fully functional protein, while its periplasmic expression in Escherichia coli resulted in a nonfunctional protein only. The antigen-binding properties of the bispecific single-chain antibody are indistinguishable from those of the corresponding univalent single-chain Fv fragments. By redirecting human peripheral T lymphocytes against 17-1A-positive tumor cells, the bispecific antibody proved to be highly cytotoxic at nanomolar concentrations as demonstrated by 51Cr release assay on various cell lines. The described bispecific construct has a molecular mass of 60 kDa and can be easily purified by its C-terminal histidine tail on a Ni-NTA chromatography column. As bispecific antibodies have already been shown to be effective in vivo in experimental tumor systems as well as in phase-one clinical trials, the small CD3/17-1A-bispecific antibody may be more efficacious than intact antibodies against minimal residual cancer cells.
Resumo:
Cell culture and direct fluorescent antibody (DFA) assays have been traditionally used for the laboratory diagnosis of respiratory viral infections. Multiplex reverse transcriptase polymerase chain reaction (m-RT-PCR) is a sensitive, specific, and rapid method for detecting several DNIA and RNA viruses in a single specimen. We developed a m-RT-PCR assay that utilizes multiple virus-specific primer pairs in a single reaction mix combined with an enzyme-linked amplicon hybridization assay (ELAHA) using virus-specific probes targeting unique gene sequences for each virus. Using this m-RT-PCR-ELAHA, we examined the presence of seven respiratory viruses in 598 nasopharyngeal aspirate (NPA) samples from patients with suspected respiratory infection. The specificity of each assay was 100%. The sensitivity of the DFA was 79.7% and the combined DFA/culture amplified-DFA (CA-DFA) was 88.6% when compared to the m-RT-PCR-ELAHA. Of the 598 NPA specimens screened by m-RT-PCR-ELAHA, 3% were positive for adenovirus (ADM), 2% for influenza A (Flu A) virus, 0.3% for influenza B (Flu B) virus, 1% for parainfluenza type I virus (PIV1), 1% for parainfluenza type 2 virus (PIV2), 5.5% for parainfluenza type 3 virus (PIV3), and 21% for respiratory syncytial virus (RSV). The enhanced sensitivity, specificity, rapid result turnaround time and reduced expense of the m-RT-PCR-ELAHA compared to DFA and CA-DFA, suggests that this assay would be a significant improvement over traditional assays for the detection of respiratory viruses in a clinical laboratory.
Resumo:
Human polyomaviruses JCV and BKV can cause several clinical manifestations in immunocompromised hosts, including progressive multifocal leukoencephalopathy (PML) and haemorrhagic cystitis. Molecular detection by polymerase chain reaction (PCR) is recognised as a sensitive and specific method for detecting human polyomaviruses in clinical samples. In this study, we developed a PCR assay using a single primer pair to amplify a segment of the VP1 gene of JCV and BKV. An enzyme linked amplicon hybridisation assay (ELAHA) using species-specific biotinylated oligonucleotide probes was used to differentiate between JCV and BKV. This assay (VP1-PCR-ELAHA) was evaluated and compared to a PCR assay targeting the human polyomavirus T antigen gene (pol-PCR). DNA sequencing was used to confirm the polyomavirus species identified by the VP1-PCR-ELAHA and to determine the subtype of each JCV isolate. A total of 297 urine specimens were tested and human polyomavirus was detected in 105 specimens (35.4%) by both PCR assays. The differentiation of JCV and BKV by the VP1-PCR-ELAHA showed good agreement with the results of DNA sequencing. Further, DNA sequencing of the JCV positive specimens showed the most prevalent JCV subtype in our cohort was 2a (27%) followed by 1b (20%), 1a (15%), 2c (14%), 4 (14%) and 2b (10%). The results of this study show that the VP1-PCR-ELAHA is a sensitive, specific and rapid method for detecting and differentiating human polyomaviruses JC and BK and is highly suitable for routine use in the clinical laboratory. (C) 2004 Wiley-Liss, Inc.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
A phytotoxicity assay based on the ToxY-PAM dual-channel yield analyser has been developed and successfully incorporated into field assessments for the detection of phytotoxicants in water. As a means of further exploring the scope of the assay application and of selecting a model biomaterial to complement the instrument design, nine algal species were exposed to four chemical substances deemed of priority for water quality monitoring purposes (chlorpyrifos, copper, diuron and nonylphenol ethoxylate). Inter-species differences in sensitivity to the four toxicants varied by a factor of 1.9-100. Measurements of photosystem-II quantum yield using these nine single-celled microalgae as biomaterial corroborated previous studies which have shown that the ToxY-PAM dual-channel yield analyser is a highly sensitive method for the detection of PS-II impacting herbicides. Besides Phaeodactylum tricornutum, the previously applied biomaterial, three other species consistently performed well (Nitzschia closterium, Chlorella vulgaris and Dunaliella tertiolecta) and will be used in further test optimisation experiments. In addition to sensitivity, response time was evaluated and revealed a high degree of variation between species and toxicants. While most species displayed relatively weak and slow responses to copper, C. vulgaris demonstrated an IC10 of 51 μ g L-1, with maximum response measured within 25 minutes and inhibition being accompanied by a large decrease in fluorescence yield. The potential for this C vulgaris-based bioassay to be used for the detection of copper is discussed. There was no evidence that the standard ToxY-PAM protocol, using these unicellular algae species, could be used for the detection of chlorpyrifos or nonylphenol ethoxylate at environmentally relevant levels. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.
Resumo:
Endometriosis is a common gynaecological disease with symptoms of pelvic pain and infertility which affects 7-10% of women in their reproductive years. Activation of an oncogenic allele of Kirsten rat sarcoma viral oncogene homologue (KRAS) in the reproductive tract of mice resulted in the development of endometriosis. We hypothesized that variation in KRAS may influence risk of endometriosis in humans. Thirty tagSNPs spanning a region of 60.7 kb across the KRAS locus were genotyped using iPLEX chemistry on a MALDI-TOF MassARRAY platform in 959 endometriosis cases and 959 unrelated controls, and data were analysed for association with endometriosis. Genotypes were obtained for most individuals with a mean completion rate of 99.1%. We identified six haplotype blocks across the KRAS locus in our sample. There were no significant differences between cases and controls in the frequencies of individual single-nucleotide polymorphisms (SNPs) or haplotypes. We also developed a rapid method to screen for 11 common KRAS and BRAF mutations on the Sequenom MassARRAY system. The assay detected all mutations previously identified by direct sequencing in a panel of positive controls. No germline variants for KRAS or BRAF were detected. Our results demonstrate that any risk of endometriosis in women because of common variation in KRAS must be very small.